Как создать эмоциональный искусственный интеллект. Как создать искусственный интеллект? (Почти) исчерпывающее руководство

Машины, воспроизводящие мозг человека или животных, будут способны к самообучению


Последнее время все большее внимание ученых привлекает новое направление исследований - эмоциональные вычисления (Affective computing). Роль эмоций в эволюции естественного интеллекта велика, искусственный интеллект пока многое упускает в этом отношении, в нем невозможно воплотить многие явления, связанные с эмоциональной картиной, с эмоциональным состоянием человека. Ученым из области ИИ активно помогают когнитивные нейробиологи, психологи и философы. Нейробиологам удалось показать связь нейромодуляторов, принимающих активное участие в эмоциях человека, с принятием решений. Оказалось, что способность человека быстро принимать решения связана с тем, что информация в нашем мозгу эмоционально «расцвечена», мы часто принимаем решения просто под воздействием того или иного эмоционального импульса. Однако это совсем не так в современных вычислительных системах.

Не воплощая эмоциональные механизмы в ИИ, мы не используем возможности быстрого принятия решений. В результате роботизированные системы или системы искусственного интеллекта оказываются нежизнеспособными в условиях реального мира. При этом мы частично воплощаем в технике те или иные эмоциональные механизмы, но называем их по-другому, например, переключение внимания – приоритизацией и перераспределением вычислительных ресурсов.

Просто выходя на улицу, мы принимаем громадное количество решений: повернуть голову в сторону громкого звука или не поворачивать; переходить ли улицу или не переходить, если там едут автомобили? Эти решения принимаются сознательно и бессознательно, процессы носят эмоциональную окраску и вовлекают множество структур мозга. Как результат, эмоции (нейромодуляторы) сильно влияют на мыслительный процесс, другими словами, на вычислительные функции нейронов.

Было замечено, что в мозгу присутствуют так называемые контуры (Circuits). Например, основной таламо-кортикальный контур выглядит так: кора мозга влияет на подкортикальные структуры: таламус, полосатое тело и так далее вызывая положительную или отрицательную эмоциональную обратную связь, которая, в свою очередь, влияет на кору. Другими словами сознательные процессы влияют на неосознанные эмоциональные процессы, и эмоциональные процессы влияют на осознанные - мы постоянно находимся в эмоциональном цикле.

Марвин Мински (пионер в области ИИ и лауреат премии Тьюринга) заметил что эмоциональные циклы могут приводить к длительной «зацикленности». Он называет их «багом», то есть ошибкой: мы можем воспроизводить периодически то или иное эмоциональное состояние. Например, когда мы находимся в депрессии: неоднократно задаемся вопросом «Почему он так ужасно поступил со мной? Это совершенно несправедливо». Или, наоборот, мы воспроизводим эйфорическое состояние: если вы ездили на мотоцикле, то вы все время вспоминаете, как вам «классно» ездить на мотоцикле, просто потому, что вам это нравится. И в действительности вы уже не едете на мотоцикле, а просто вспоминаете это и находитесь в этом цикле.

В работе по интеграции эмоций в ИИ стоит выделить два направления, которые очень тесно связаны. Во-первых, определение эмоций человека по его лицу, жестикуляции и так далее (Affective computing). Это направление, которое очень интенсивно развивается в Соединенных Штатах под руководством Розалинд Пикард в MIT Media Lab. В 1997 году Пикард опубликовала свою книгу Affective Computing, послужившую отправной точкой исследований. В ее лаборатории проводятся интересные эксперименты: участники закрепляют камеры перед собой, с некой периодичностью снимают выражения лиц и одновременно собирают данные в динамике: проводимость кожи, пульс, давление и так далее, ассоциируя эмоциональную реакцию и показания нательных датчиков.

Другое направление, которым в том числе и мы занимаемся (лаборатория машинного понимания ИТИС КФУ), - Affective computation, это воспроизведение человеческих эмоций в вычислительных системах. У машин нет нейронов, нет нейромодуляторов, нет биохимии, есть только вычислительные процессы. Соответствие между вычислительными процессами и мыслительными далеко не линейно. Приходится создавать достаточно сложные теории, чтобы понять, из чего, в целом, собираются те или иные психологические феномены и как мы можем воспроизвести это в вычислительных системах.


Головной мозг человека потребляет примерно 20 Ватт, как лампочка. Последняя симуляция работы 1% головного мозга, проведенная в японском Институте RIKEN в 2013 году, потребовала 250 суперкомпьютеров. Это достаточно серьезный успех. Однако на борту каждого суперкомпьютера находилось 80 000 процессоров, которые потребляли гораздо больше чем 20 Ватт. И при этом симуляция примерно в тысячу раз медленнее реальной работы головного мозга. Пока эффективность явно не на стороне вычислительных систем. Это говорит о том, что нам нужна новая компьютерная архитектура. На ее создание нацелен проект BRAIN: правительство США выделяет $300 млн в год для воспроизведения человеческого мозга в виде микросхем и программного обеспечения.

На сегодняшний день создана нейробиологически инспирированная не-фон-Неймановская архитектура TrueNorth (фон-Неймановская - архитектура обычных компьютеров). Она закладывает основы для нового пути развития вычислительных систем: воссоздания нейронных сетей не с помощью программного обеспечения, а в виде микросхем, «железа». Новые микросхемы моделируют до миллиона нейронов. Специалисты из IBM пошли дальше: они уже создали материнскую плату, в которой собрали массив 4х4, всего 16 млн нейронов.

С одной стороны, это не так много, ибо количество нейронов в коре человеческого мозга от 19 млрд до 23 млрд, а общий объем - 86 млрд. С другой стороны, это уже интересные масштабы. Например, в коре головного мозга мыши - млекопитающего, у которого есть весь необходимый эмоциональный багаж, - только 4 млн нейронов.

Еще интереснее посмотреть на историческую перспективу: в 2011 году у той же IBM была микросхема, которая воспроизводила всего 256 нейронов. Таким образом, произошел скачок на три порядка. Если будет следующий скачок, то, мы сможем выйти на масштабы коры человеческого мозга. И тогда, возможно, появятся самообучающиеся системы сравнимые по мощности с человеческим мозгом.

Что дают самообучающиеся системы? Мы не программируем мышей, котят, мы не программируем детей. Потому что это не нужно. Такие вычислительные системы (искусственные агенты) не будут нуждаться в программировании в его нынешнем понимании. К ним нужно будет применять совершенно другие техники, известные педагогам детских садов и школ. Таким образом, мы подходим к концепции детства для агентов искусственного интеллекта, что открывает принципиально новые перспективы для развития ИИ.

Максим Таланов
кандидат технических наук, руководитель Лаборатории Машинного Понимания Казанского федерального университета, преподаватель Университета Иннополис
forbes.ru

Комментарии: 1

    Сэм Харрис

    Стоит ли бояться сверхразумного искусственного интеллекта? Нейробиолог и философ Сэм Харрис считает, что очень даже стоит. По его мнению, мы стоим на пороге создания сверхразумных машин, при этом не решив множество проблем, которые могут возникнуть при создании ИИ, который потенциально сможет обращаться с людьми так же, как те с муравьями.

    Михаил Бурцев

    Почему за полвека усилий не удалось создать искусственный интеллект? И как киборги помогают понять работу мозга? Об этом рассказывает Михаил Бурцев, кандидат физико-математических наук, руководитель лаборатории нейронных систем и глубокого обучения МФТИ.

    Виталий Дунин-Барковский

    Как смоделировать мозг? Постижим ли человеческий мозг? Как алгоритмизировать сознание? И можно ли скопировать его на неорганический носитель? Ответы на эти вопросы помогает найти Виталий Дунин-Барковский, доктор физико-математических наук, профессор, заведующий отделом нейроинформатики Центра оптико-нейронных технологий НИИСИ РАН.

    Иван Иванчей

    Когнитивная психология с самого начала своей истории описывала человека как вычислительную машину. Иван расскажет о ключевых моментах развития этого пути исследования человека, к чему он привёл на сегодняшний день и как учёные моделируют такие таинственные и, как кажется, присущие только человеку процессы, как интуиция, предвидение, инсайт и уверенность.

    Горбань А. Н.

    Игрушка ли нейрокомпьютер? В чем истинные преимущества нейрокомпьютеров? В каких областях преимущества нейронных систем наиболее очевидны? Избыточность - это хорошо или плохо? Какие задачи под силу только нейрокомпьютеру?

    Евгений Путин

    Евгений Путин, аспирант кафедры «Компьютерные Технологии» университета ИТМО. В рамках диссертации Евгений исследует проблемы интеграции концепции выбора признаков в математический аппарат искусственных нейронных сетей. Евгений расскажет о том, как устроены нейронные сети, что они могут делать сейчас, на что будут способны в недалеком будущем и ждать ли прихода Скайнета.

    Впервые был достигнут масштаб, соответствующий человеческому мозгу - 530 миллиардов нейронов и 137 триллионов синапсов. Симуляция происходила в 1542 раза медленнее реального времени. В ней были задействованы все 1 572 864 ядер и полтора петабайта памяти.

    У архитектуры фон Неймана есть один известный минус, который состоит в том, что и данные, и программы-инструкции, описывающие то, что нужно сделать с данными, находятся в одной и той же памяти. И процессор либо собирает данные из памяти, либо манипулирует ими в соответствии с командой. Одновременно подгружать новые данные и обрабатывать их в рамках такой схемы нельзя. Из-за этого современным компьютерам, сколь бы быстры они ни были, трудно выполнять некоторые задачи, например, связанные с распознаванием изображений. Пытаясь выйти за пределы архитектуры фон Неймана, специалисты по «электронным мозгам» обратились к мозгам настоящим.

    Сергей Марков

    На лекции мы обсудим вторую весну искусственного интеллекта в цифрах и фактах, ключевые работы в области искусственного интеллекта и машинного обучения в 2017 году. Поговорим о распознавании изображений, речи, обработке естественного языка и о других направлениях исследований; обсудим новые модели и оборудование 2017 года. Также поговорим о применении ИИ и машинного обучения в бизнесе, медицине и науке, а также обсудим, чего мы ждем от искусственного интеллекта и машинного обучения в 2018 году.

    Сергей Марков

    Гамбургский счет

    В 1950 году английский ученый Алан Тьюринг в статье "Вычислительные машины и разум" задался вопросом: "Может ли машина понимать человека?". Так родился знаменитый тест Тьюринга, в котором компьютер пытался обмануть людей. Но как компьютер понимает человека и чего он пока понять не может? Об этом по гамбургскому счету мы решили спросить специалиста в области машинного обучения, директора информационных технологий компании "Activebusinesscollection" Сергея Маркова.

Где он рассказал об одной из своих целей, которая привела в профессию – желанию познать принцип работы и научиться создавать самому игровых ботов.

А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.

Стадия 1. Разочарование

Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является...математика. Если быть немного конкретнее, то вот список её разделов, которые необходимо проштудировать хотя бы в формате университетского образования:

    Линейная алгебра;

  • Теория графов;

    Теория вероятностей и математическая статистика.

Это тот научный плацдарм, на котором будут строится ваше дальнейшее программирование. Без знания и понимания этой теории все задумки быстро разобьются о взаимодействие с человеком, ведь искусственный разум на самом деле не больше, чем набор формул.

Стадия 2. Принятие

Когда спесь немного сбита студенческой литературой, можно приступать к изучению языков. Бросаться на LISP или другие пока не стоит, для начала надо научиться работать с переменными и однозначными состояниями. Как для быстрого изучения, так и дальнейшего развития прекрасно подойдёт , но в целом можно взять за основу любой язык, имеющий соответствующие библиотеки.

Стадия 3. Развитие

Теперь переходим непосредственно к теории ИИ. Их условно можно разделить на 3 категории:

    Слабый ИИ – боты, которых мы видим в компьютерных играх, или простые подручные помощники, вроде Siri. Они или выполняют узкоспециализированные задачи или являются незначительным комплексом таковых, а любая непредсказуемость взаимодействия ставит их в тупик.

    Сильный ИИ – это машины, интеллект которых сопоставим с человеческим мозгом. На сегодняшний день нет реальных представителей этого класса, но компьютеры, вроде Watson очень близки к достижению этой цели.

    Совершенные ИИ – будущее, машинный мозг, который превзойдёт наши возможности. Именно об опасности таких разработок предупреждают Стивен Хоккинг, Элон Маск и кинофраншиза «Терминатор».

Естественно, начинать следует с самых простых ботов. Для этого вспомните старую-добрую игру «Крестики-нолики» при использовании поля 3х3 и постарайтесь выяснить для себя основные алгоритмы действий: вероятность победы при безошибочных действиях, наиболее удачные места на поле для расположения фигуры, необходимость сводить игру к ничьей и так далее.

Как вы поняли даже из названий, это API, которые позволят без лишних затрат времени создать некоторое подобие серьёзного ИИ.

Стадия 5. Работа

Теперь же, когда вы уже вполне ясно представляете, как ИИ создавать и чем при этом пользоваться, пора выводить свои знания на новый уровень. Во-первых, для этого потребуется изучение дисциплины, которое носит название «Машинное обучение» . Во-вторых, необходимо научиться работать с соответствующими библиотеками выбранного языка программирования. Для рассматриваемого нами Python это Scikit-learn, NLTK, SciPy, PyBrain и Nump. В-третьих, в развитии никуда не обойтись от

Каждый в своей жизни делал свой велосипед. В оправдание желания его сделать, можно только сказать, что если бы люди периодически это не делали, то многих вещей мир бы просто не увидел.

Свою игру, а точнее игровой искусственный интеллект (ИИ) сделать желание было очень давно. Не буду кривить душой: сначала банально не хватало знаний, потом как ни странно времени. У меня было несколько недель относительно свободного времени, что бы реализовать мечту своего детства.

Расскажу что получилось, а также опишу путь, по которому шел, и наблюдения, которые по пути сделал. Оговорюсь сразу, что буду описывать не код, а соображения, мысли, и проблемы с которыми столкнулся в процессе реализации мечты.

Этап планирования структуры

При планировании структуры среды обитания ИИ сразу сделал попытку заложить расширяемость и хоть какую-то универсальность. Решено было делать все на динамических массивах, с повсеместным применением подходов объектно-ориентированного программирования, где только возможно будет.

В основе иерархии классов среды обитания ИИ было положено несколько пар классов:

  • Ключевая точка – класс, который отражает места пересечений связей графа путей.
  • Путь – класс, который обеспечивает связи между Ключевыми точками.
  • Объект – класс, который является производным от класса Ключевая точка, экземпляры которого размещаются на Пути.
  • Субъект – тот же класс Объект, экземпляры которого имеют функции принятия решений.

Замыкает перечень классов класс Мир , который обрамляет все перечисленные классы, организуя их взаимодействие между собой.

Для работы нужна была какая-то конкретная не сложная игровая концепция. И в качестве такой была выбрана концепция игры Pack-Man , ввиду простого набора правил.

Сразу же были выделены дополнительные подклассы Объектов и Субъектов игры:

  • субъект Пакман – тот самый Packman;
  • объекты Фрукта – те, что для поесть Пакману;
  • субъекты Привидение – те, для которых в игре создан Пакман.

Этап планирования работ

Как показал поверхностный анализ: необходимое количество кода для полноценной работы игры, несмотря на небольшое количество функционала системы, оказался довольно большой. Сделан был естественный вывод, что нужно произвести дробление задач на множество изолированных подзадач, что бы было видно хоть какие-то результаты своей возни – иначе детские желания могли превратиться в недетский затяжной кошмар.

Были сразу же выделены следующие этапы реализации:

  1. Создание классов обеспечивающих функционирование мира, в котором будет жить искусственный интеллект (классы Мир, Ключевая точка и Путь);
  2. Отрисовка Мира и заодно создание основы функционала для визуализации данных.
  3. Создания класса Объект, его взаимодействий со средой.
  4. Создание первого экземпляра Объекта, а именно Фрукты и ее отрисовка.
  5. Создание дополнения функционала для Объекта, что бы превратить его в Субъект.
  6. Создание экземпляра Пакман. Отрисовка. Добавление правил в игру.
  7. Разработка кода взаимодействия с пользователем, организация работы системы в «реальном масштабе времени».
  8. Реализация алгоритма поиска кратчайшего пути. Соединение его с управлением Пакмана и автоматическим изменением его состояния Миром во времени.
  9. Создание экземпляра Привидение. Отрисовка. Добавление правил в игру.
  10. Улучшение системы по мелочам.
  11. Получение удовольствия.
С этим планом я приступил к работе.

Реализация

Первые два этапа оказались простыми. Была организованы три класса: Мир, Ключевая точка и Путь: их конструкторы, деструкторы, несколько функций обеспечивающих создание связей между экземплярами классов по ссылке, и собственно все.
Был создан экземпляр класса Мир с пятью точками, где пути образовывали конверт со смещенной центральной точкой, что бы расстояния между точками были явно разной длины. Отрисовка была сделана очень-очень скромно: линиями да кружечками – ровно на столько, насколько можно было понять, что в Мире происходит.

Этапы №3 и №4 тоже особого труда не вызывали – Фрукта не бегала, не вредничала, а только лежала и отрисовывалась.

Начиная с этапа №5 пошла основная работа. Был написан функционал Субъекта с использованием класса Объект в виде списка дел, которые хотел бы сделать Субъект. Дополнен функционал класса Мир, который занимался мониторингом списка дел Субъектов и выполнял их в рамках имеющегося у Субъекта кванта времени и наложенных на действия Субъекта ограничений и правил игры.

Этап 6 Проблемы с появлением экземпляра Пакмана как нестранно не начались. Просто появился экземпляр типа Субъект, а так же отрисовка на дисплее в нужной координате кружочка. И еще были добавлены правила поедания Фрукты.

Даже на этапе №7 , когда мышкой генерировалось одно задание в виде команды «беги» к указанной координате, проблем не было. Искалась ближайшая точка, которая попадала бы в Путь, на котором уже стоял Пакман и Пакман послушно туда шел.

Приключения начались на этапе №8 , где выполнялась реализация алгоритма поиска кратчайшего пути. Функция поиска кратчайшего пути представляла собой модифицированный алгоритм Ли , адаптированный к динамическим массивам и структурам графа. Основные сложности были при написании кода, где реализован был обратный ход. Для уменьшения количества перестраиваний структуры графа при перемещении экземпляров Объектов Объекты были сделаны не как узловые Ключевые точки, соединенные Путями, а как Ключевые точки, принадлежащие к Пути. Имея на момент написания статьи работающий код, до сих пор не уверен в правильности выбранного решения. Что проще: то ли перестраивать локально граф Мира и заодно маршруты Субъектов, которые перемещаются через измененные фрагменты графа или просто размещать классы Субъектов и Объектов на неизменяемом графе Путей.

Само собой на всех этапах работы постоянно мелькали ошибки доступа к памяти. Наиболее жестокий случай был, когда сообщение вылетало где-то на середине игры. Забывал убирать ссылку между Путями и разрушенными экземплярами Фруктов, когда их съедали. Ошибка проявлялась спустя время после съедения при перезаписи памяти. Пока там хранились данные разрушенного объекта и они были не перезаписанные новым динамическим объектом все было нормально, т.е. крах программы был не мгновенный.

Наконец на этапе №9 было добавлено первое Привидение. Точка назначения была всегда координата Пакмана. Использовалась уже написанная функция поиска кратчайшего пути, которая вызывалась постоянно 24 раза в 1 секунду. После генерации списка действий движение Привидения осуществлялось системой (Миром) автоматически.

Когда пришел к этапу №10 , то, как говорится, сани понеслись!
Был сделан генератор случайных карт. При создании карты для генерации Путей было сделано несколько критериев их допустимого создания: в узловых точках должно пересекаться не более 4-х Путей, а узловые точки должны быть не ближе к уже проложенным Путям определенного расстояния, как и пути не должны быть длиннее определенной константы.

Затем были добавлены несколько Привидений, которые настырно преследовали Пакмана.

Играть с такими Привидениями было просто нереально. И тут меня осенило, что нужен «туман войны», тогда бы Привидения более естественно себя вели, а не радикально меняли свой маршрут, когда ты немного изменял маршрут Пакмана где-то на другом конце карты.
Первая мысль было для каждого Субъекта нужно делать массив видимых элементов мира, а также доделать память Субъекту, что бы хранить где, кого и когда он видел. Подумав, понял, что для паука, который хочет съесть муху это все очень сложно и в реализации громоздко.

Выход был найден как нельзя простой. Случайным образом находилась точка на карте, куда следовало Привидение (таким образом, было организовано простое брождение по карте и поиск Пакмена). В случае попадания Пакмена в определенный (заданный константой) диапазон видимости Привидения, у Привидения перестраивался маршрут к нему. При нахождении жертвы в области видимости Привидение постоянно перестраивало к ней свой маршрут, а при выходе Пакмена за пределы видимости Привидение продолжало следовать к точке, где его последний раз видело жертву. По достижении этой точки начиналось опять слепое брождение по карте.

На этом собственно остановился и спокойно перевел дух.
В завершение были достроены декоративные элементы: «Конец игры» (съедение Пакмена), подсчитывание очков (количества съеденных Фрукт), «Завершение уровня» (съедение всех Фруктов).

Итоги мучений.

Несмотря на большое количество пролитого пота и крови были достигнуты сравнительно небольшие результаты: для дальнейших изысканий реализована основа Мира, в котором живет интеллект простейшего хищника типа паук. По видимости дальше необходимо создать модификацию существующего алгоритма ИИ для реализации поведения «Жертвы» (в рамках игры – это убегающие от Пакмана Фрукты), а также комбинированного ИИ («Хищник-жертва»), что позволит сделать бот Пакмана, а затем не тратить силы на «поиграть», а только с удовольствием наблюдать на метания в пробирке этого «Колобка».

Посмотреть воочию, что вышло можно « » (исполняемый файл для Win32)*. Обратите внимание на тумблер «Режим матрицы». При его включении можно видеть, как система принимает решения, и почувствовать себя немного Нео. К сожалению, додумался его сделать на 10-м этапе, для лучшего понимания работы ИИ. Если бы сделал ранее, потратил меньше время на отладку алгоритма поиска кратчайших путей.

P.S. Не все и не всегда делается из соображений экономической целесообразности и оптимальности, некоторые вещи делаются ради удовольствия. Несмотря на простоту графики, когда «Она» задышала, я испытал неописуемую радость.

* Уже после завершения всех запланированных работ и написания статьи обнаружил еще одну редко выпадающую ошибку. Место выпадения ошибки указывает, что проблема связанна с тем, что моделирование игрового мира выполняется в обработчике обычного таймера, а управление Пакменом в обычном обработчике мыши. В общем, там нет никаких обычных семафоров и других подобных «заумных» вещей, что позволило бы обеспечить целостность данных, к коим идет обращениях в обеих функциях. Думаю до свадьбы заживет к коммерческой версии баг будет исправлен.

Теги: Добавить метки

Одной из наиболее старых распространенных методик репродуктивных технологий является метод искусственной инсеминации (ИИ). При этом способе зачатие приближено к естественному. Это вспомогательный искусственный метод, при котором семя партнера (мужа или ) вводится в матку женщины. Особенно удобна инсеминация дома. Это самый простой и доступный метод вспомогательных репродуктивных технологий. Обо всех тонкостях инсеминация в домашних условиях предлагаем вам разобраться поподробнее.

Современная жизнь полна факторов, которые не только вредны для нашего здоровья, но и могут нарушать репродуктивную функцию организма. Такими негативными факторами для репродуктивного здоровья являются неблагоприятная экологическая обстановка, стрессы, несбалансированное питание, гиподинамия. Половая система обоих полов очень чувствительна и реагирует на подобные нарушения серьезными сбоями. Нередко удается решить многие проблемы женского и мужского бесплодия, используя искусственную инсеминацию дома.

Искусственная инсеминация во многом схожа с половым актом. При этом обработанная сперма вводится в полость матки медицинским способом (вне полового акта). Возможно, поэтому результативность этого метода бывает довольно высокой у людей, испытывающих трудности с естественным зачатием. Этот, близкий к физиологическому метод получения потомства бесплодным парам, известен еще с 1770 года.

Кого же может заинтересовать подобный способ лечения бесплодия? Оказывается, таких людей немало. Вот наиболее частые причины обращения к инсеминации на дому:

  1. для пар, у которых анализы в норме, но беременность не наступает;
  2. при положительном ВИЧ статусе женщины, чтобы не заразить партнера;
  3. у женщин, не имеющих постоянного партнера;
  4. если партнер женщины не желает иметь детей;
  5. при проблемах со спермой у мужчины ( , субфертильная сперма) и обращении к донорской сперме;
  6. после перенесенных заболеваний или травм у партнера (паротит, гонорея, сифилис, туберкулез, гепатит, перегрев, облучение);
  7. при эякуляторно-сексуальных расстройствах у мужчин;
  8. при вагинизме у женщин (сокращение влагалищных мышц и промежности с невозможностью полого акта);
  9. для пар с иммунологическим бесплодием;
  10. для женщин, желающим зачать ребенка самостоятельно (в т.ч. у лесбийских пар, у и др.)

Преимущества

Какие же преимущества у данного метода, если он с большим успехом применяется в практике зарубежных и отечественных клиник? Преимуществами метода искусственной инсеминации являются:

  • метод не требует больших финансовых вложений;
  • происходит очень быстро, как в естественных условиях;
  • процедура безболезненна;
  • может производиться в домашних условиях;
  • позволяет контролировать овуляцию и момент слияния яйцеклетки со сперматозоидом в максимально благоприятный момент для зачатия;
  • может использоваться для пар, имеющих проблемы с самостоятельным естественным зачатием (инвалидность, травмы, импотенция);
  • позволяет повысить качество спермы и максимально использовать даже минимальный шанс забеременеть;
  • при биологической несовместимости спермы партнера со слизистым секретом цервикального канала партнерши.

Минусы искусственной инсеминации

Хотя метод инсеминации на дому имеет массу преимуществ и считается довольно эффективным, однако эта процедура имеет и некоторые минусы. К ним можно отнести:

  • рекомендуется не более 2-4 раз использования этого метода: искусственная инсеминация становится неэффективной при ее многократном использовании;
  • малая эффективность метода у женщин старше 35 лет;
  • этот метод намного менее эффективен (результативность в 15-30%), чем метод традиционного ЭКО (результативность составляет 40-60%).

Условия успешной инсеминации

Метод искусственной инсеминации, как вспомогательного метода искусственного оплодотворения, может применяться далеко не во всех случаях проблем с зачатием. Для того, чтобы ввести в полость матки женщины сперму от партнера, должны соблюдаться некоторые условия:

  1. нормальное строение матки и отсутствие аномалий (кроме );
  2. хорошая проходимость маточных труб;
  3. состояние овуляции;
  4. преовуляторный фолликул;
  5. отсутствие общих и гинекологических инфекционных заболеваний.

Существует также условие возможности использования данного метода для партнера: должна быть с показателями, близкими к нормальным или нормальными.

Кому противопоказана инсеминация

Однако при всей кажущейся простоте процедуры, она показана далеко не всем. Есть случаи, когда инсеминация на дому противопоказана. Такими ситуациями являются:

  • злокачественные опухоли любого органа;
  • опухолевидные заболевания яичников ( , киста) и их новообразования;
  • невозможность появления беременности по медицинским показаниям (заболевания психического или терапевтического профиля).

Подготовка к инсеминации в домашних условиях

Кажущаяся простой (на первый взгляд) процедура инсеминации требует тщательной подготовки.

Предварительно необходимо пройти медицинское обследование обоим партнерам. Ели сперма донорская, то обследуется лишь женщина.

Также женщине важно сделать УЗИ малого таза. Помимо данных о состоянии общего и репродуктивного здоровья, потенциальной матери необходимо сдать анализы для исключения:

  • половых инфекций;
  • гепатитов;
  • сифилиса.

Также женщине важно определить дату последних месячных и определить дату предстоящей овуляции. Иногда женщине рекомендуют использовать гормональную терапию для стимуляции выработки яйцеклеток.

Кроме того, для процедуры необходимо приобрести:

  • специальный набор (куда входят шприц, катетер, пипетка, зеркало;
  • гинекологические перчатки;
  • ватные тампоны;
  • дезинфицирующий раствор;
  • стерильное полотенце.

Руки и половые органы перед инсеминацией потребуется хорошенько вымыть.

Иногда такой метод оплодотворения требует 2-3 попытки. Инсеминацию более 4 раз считают неэффективной.

Как производится процедура дома

Обычно специалисты инсеминацию в домашних условиях редко рекомендуют. Многие сравнивают эту процедуру дома с самостоятельной пломбировкой зубов или удалением аппендицита.

Медики обычно настаивают на профессиональном участии и присутствии специалистов в любых процессах вмешательства в процесс искусственного оплодотворения. Однако многие используют данную технику самостоятельно, экономя деньги на обращение к специалистам.

В настоящее время в продаже имеется специальный набор для внутривлагалищной инсеминации дома. В момент искусственного введения спермы и полчаса после нее женщина должна лежать на спине не менее получаса (с приподнятым тазом). Данная процедура должна проводиться в момент овуляции.

Последовательность процедуры

  1. Вначале необходимо подготовить свежую донорскую сперму, помещенную в специальный контейнер. Партнер или муж должен вымыть руки и член перед мастурбацией. Сперма является максимально жизнеспособной первые 2-3 часа после ее получения.
  2. Подождать около 15-20 минут для разжижения спермы.
  3. При данной процедуре сама женщина очень плавно вводит сперму с помощью стерильного шприца со специальным наконечником во влагалище. Однако удобнее, чтобы это делал муж или другой помощник.

Главное – нажимать на поршень плавно, иначе быстрое введение может вызвать спазм шейки матки и поспособствует вытеканию спермы.

  1. Предварительно из шприца удаляется воздух. Самостоятельное введение спермы не совсем удобно: приходится вставлять во влагалище специальное зеркальце для контролирования процесса.
  2. Перед введением спермы во влагалище вводится зеркальце (на глубину 2-3 см). После этого туда же осторожно вводится наконечник, не доводя его близко до маточной шейки. Самостоятельное введение сперматозоидов в матку опасно травматизмом и инфицированием.
  3. Затем необходимо нажать на поршень шприца и выпустить сперму у самого основания шейки матки.
  4. Полежать с приподнятым тазом 30-40 минут. При этом шанс у сперматозоидов достигнуть цели будет выше, также это сохранит сперму от вытекания.

Некоторые считают, что шанс забеременеть таким способом выше, если женщина доведет себя до оргазма.

О том, насколько эффективно прошел процесс инсеминации на дому, покажут тесты на беременность.

Ассистировать в момент инсеминации может человек, который не заставит женщину напрягаться и нервничать, иначе это снизит шанс забеременеть.

Иногда женщины прибегают при ИИ к использованию влагалищного расширителя. Рассмотрим, как это происходит:

  1. Расширитель вводится слегка наклоненный, под углом 45 градусов.
  2. Необходимо раздвинуть лапки расширителя на 2-3 см, чтобы шейка матки оказалась в проеме.
  3. В этом положении расширитель фиксируется (в модели сделан фиксатор).
  4. Нельзя двигать расширитель в раздвинутом положении, чтобы влагалище при этом не травмировалось.
  5. К шприцу крепится удлинитель, при этом надо удостовериться в крепости и надежности фиксации.
  6. Только после этого во влагалище вводится шприц для введения спермы.
  7. После введения спермы крепление расширителя осторожно ослабляют, не меняя угол наклона в 45 градусов.
  8. Когда расширитель вернулся в исходное положение, его извлекают из влагалища.

Возможные осложнения после инсеминации

Хотя процесс инсеминации максимально отработан и не особо отличается от естественного полового акта, тем не менее, при ИИ существует риск развития некоторых осложнений. Подобными осложнениями данной процедуры могут быть:

  • появление симптомов острого воспаления органов половой сферы женщины или обострение уже имеющихся у нее хронических процессов;
  • аллергия на препараты, стимулирующие овуляцию;
  • шокоподобная реакция на введение спермы во влагалище;
  • внематочная беременность;
  • увеличение шансов возникновения многоплодной беременности.

Чего не надо делать во время инсеминации дома

Поскольку инсеминация на дому производится женщиной без врачебного патронажа, ей надо знать о некоторых ограничениях использования этой процедуры. Такими запретами являются:

  1. Использование слюны и смазок может повредить сперматозоидам.
  2. Нельзя использовать один набор инструментов дважды.
  3. Запрещено впрыскивание спермы в шейку матки, так как это может привести к шоку женщины.

Отзывы

Надежда, 37 лет

Делала ИИ два раза и оба неэффективно. Думаю, такую сложную операцию дома нормально не сделаешь.

Светлана, 34 года

У нас с мужем не получались дети. Решили попробовать ИИ в домашних условиях – нам посоветовал врач. Вначале ничего не вышло, но после двух неудачных попыток мы готовимся к рождению доченьки.

Валентина, 41 год

Я очень сомневаюсь в эффективности инсеминации дома. С моими проблемами по гинекологии я и в клинике методом ЭКО забеременела только со 2 раза. Какая там инсеминация в моем случае?

Виолетта, 32 года

А для меня и моей девушки инсеминация – это единственный приемлемый способ родить ребеночка. Я исповедую лесби-культуру и не приемлю секса мужчиной. Но малыша мы подругой хотим. Будем пробовать ИИ. Надеемся на успех.

Изучив отзывы об инсеминации дома, можно отметить их противоречивость. В некоторых случаях инсеминация дома оказывается малоэффективной. Однако многим парам благодаря именно этому методу удалось стать счастливыми родителями. Уж во всяком случае, метод инсеминации дома не требует больших финансовых вложений. А будет ли положительный результат от этой процедуры – будет видно после его использования. Не стоит пренебрегать правилами подготовки к использованию искусственной инсеминации. Ведь на кону лежит возможность стать родителями, сохранив при этом здоровье ребенка и собственное здоровье.