Свет и цвет: основы основ. Что такое цвет

В данной заметке я хотел рассмотреть зеленый оттенок изображения и «цветовую яркость», как методы, с помощью которых производители проекторов создают то, что мы называем самым ярким режимом проектора, например «Макс. Яркость» или «Динамический».

Предположим, я хоббит, и у меня в норке стоит домашний проектор. Как объяснить мне, что яркость может иметь значение? Ведь «мне хватает». Все просто - нужно на моем 111-м дне рождения склонить меня к показу слайдов под открытым небом...

Естественно, все проекторы для школ, сцен, больших помещений и пр. участвуют в гонке за яркость. Никакая точность цветопередачи не поможет, если вы не можете обеспечить адекватную яркость. Да и откуда взяться точности, если комнатный свет уже размывает цвета, не только снижая контрастность, но и меняя, собственно, оттенок цветов в сторону более бледного.

В связи с этим и сложилась традиция иметь несколько режимов цветопередачи. В самом ярком режиме проектор выдает все люмены, на какие способен, снижая точность цветопередачи. В самом точном режиме точность цветопередачи наилучшая, яркость – наименьшая. Ну и еще один режим должен быть где-то посередине между этими двумя - компромиссный.

Основные виды искажений цветопередачи в самом ярком режиме – это:

  • Низкая цветовая яркость
  • Сильный зеленый оттенок
  • Срезанные плавные переходы у цветов выше 80% IRE
  • Сильная неточность отдельных цветов по оттенку и насыщенности

Наиболее очевидны первые две проблемы, о которых и поговорим, причем в обоих случаях речь идет просто о том, в какой степени производитель был готов пожертвовать цветопередачей ради максимальной яркости. То есть, мы не спрашиваем, пожертвует ли – мы спрашиваем, насколько.

Дело в том, что я, как зритель, хочу , чтобы в самом ярком режиме цветопередача была хуже – тогда я получу более яркое, а значит – более красивое изображение в сложных условиях. Производитель обязан в ярком режим задирать яркость до максимума, сохраняя цветопередачу в таких пределах, чтобы ее неточность не бросалась в глаза и соответствовала разрушительному влиянию внешнего освещения.

Баланс белого

Как известно, цвета принято получать смешением красного, зеленого и синего (R., G., B.). Для получения белого, то есть нейтрального цвета, яркость К., З., С. должна находиться в строгом балансе. Нежелательный оттенок изображения вызван тем, что какой-то из этих элементов имеет запас «лишней яркости» относительно остальных, и производитель может и должен воспользоваться этой лишней яркостью в «самом ярком режиме».

К примеру, у светодиодного проектора, формирующего свет с помощью красного, зеленого и синего светодиодов, один из трех элементов окажется «слабым звеном». К примеру, зеленый слабее остальных, и для проецирования сбалансированной картинки он будет работать на полную мощность, а остальные два - нет. Получается правильный белый цвет.

Теперь производитель создает режим максимальной яркости - он решает сохранить баланс между красным и синим, но снимает их ограничение, отвязывает их от зеленого. Яркость красного и синего возросла, изображение получило пурпурный оттенок той или иной степени заметности.

Допустим, жадность производителя увеличилась и он решил отвязать яркость синего светодиода от красного. Предположим, что синий ярче. И вот, оттенок изображения уже сильно синеватый. Возможно, пользователь уже не захочет использовать такой режим даже в сложных условиях освещения, зато производитель имеет возможность приписать себе дополнительные 25% яркости.

С ламповыми проекторами история аналогичная – ртутная лампа дает существенно больше зеленого, чем нужно. Нужно для чего? Опять же, для точно сбалансированного изображения. Собственно, как работает стандартный трехматричный (R, G, B) метод образования цветов? Сперва мы выделяем из спектра свечения лампы пучки правильного красного, зеленого и синего. Правильного - значит соответствующего стандарту sRGB, например. Далее все идет в соответствии со стандартом: точно известны пропорции смешения цветов: какой яркости должны быть R, G, B для получения нейтрального белого, а также то, что яркость желтого = яркость зеленого + яркость красного.

Тем не менее, чтобы получить белый, нам нужно существенно меньше зеленого, чем у нас есть – часть зеленого мы выкидываем. Сколько яркости мы теряем при этом? 50% - легко! В общем, вы наверняка понимаете, откуда берется дополнительная яркость у обычного лампового проектора в самом ярком режиме… Результат от переизбытка зелени, понятное дело, различен. Тем не менее, нормальная ситуация – когда зеленый оттенок четко выражен. Это компенсируется отчасти и привыканием глаз, а также и без того негативным влиянием фонового освещения. В идеале это должно выглядеть плохо в темном помещении и нормально в освещенном. У всего есть свой предел, и завышение яркости зеленого выше определенного уровня приведет к совсем уж несмотрибельному изображению.

Цветовая яркость

Выше я предполагал, что изображение формируется RGB методом (свет лампы делится на красный, зеленый, синий, из которых и формируется все остальное).

Одноматричная DLP технология может обходиться со светом лампы иначе, но факт: она уходит от одновременного смешения R, G, B и смешивает цвета не в одну единицу времени. Это не может не дать падения эффективности использования лампы - отрицать это было бы странно. Тем не менее, частично позиции удается отыграть благодаря тому, что DLP проекторы могут использовать не только R, G, B цвета.

К примеру, одноматричный проектор может отдельно выделить желтый, который при одновременном формировании изображения трехматричными проекторами был бы просто выкинут, а желтый формировался бы, как и положено по RGB методу смешения цветов, из зеленого и красного.

DLP проектор может создавать белый цвет из чего угодно: из желтого, из пурпурного, из… белого, пропуская свет лампы на экран через прозрачное стеклышко - любой цвет может внести свой вклад. Управляет всем этим сверхразум по имени «BrilliantColor», вся эта ваша классическая система RGB цветосмешения им просто игнорируется. Итак, большинство DLP проекторов - это не RGB устройства!

Тем не менее, стандарты RGB никто не отменял, поэтому в точном режиме BrilliantColor должен под нее подстроиться и неукоснительно ей следовать, на что он вполне способен.

А вот в ярком режиме появляется столько новых возможностей! Вы уже поняли, о чем я - возможности извлечь больше яркости, привнеся какие-нибудь проблемы цветопередачи.

Главное нововведение - мы имеем возможность принести в жертву яркости новые параметры цветопередачи, а именно – яркость цветов. То есть, все точно как в популярном примере: проектор дает 3000 люмен по белому, а красный у него, к примеру, такой, как должен быть у проектора на 800 люмен. Причина уже обозначена: белый получается смешением чего угодно, включая специальный «прозрачный» сегмент.

На практике в этом случае вы включаете презентацию и у вас на фоне белого листа с черным текстом красная линия на графике оказывается в 3 раза темнее, чем должна быть, то есть, становится темно-красной. В освещенном помещении, обращу ваше внимание, темные цвета соответствуют менее контрастным, более размытым цветам.

Действительно, цветовая яркость становится еще одним способом, которым можно было бы снизить точность цветопередачи, получив при высокой яркости разумный компромисс. Тем не менее, производители DLP проекторов часто используют сверхъяркий режим исключительно для того, чтобы сравняться по паспортной яркости с трехматричными конкурентами, а производители трехматричных проекторов тоже используют подобные приемы манипуляции с цифрами, но в других областях. В общем, все вполне обоснованно хотят избавиться от своих недостатков, затыкая их цифрами в спецификациях.

Подход формирования цветов одноматричных проеткоров дает иногда и такой плюс, как более правильный баланс белого на очень высокой яркости. Производители DLP постепенно осваивают и обуздывают своего лихого скакуна по имени BrilliantColor, в результате чего в режимах высокой яркости, когда нет необходимости выводить на экран 100% насыщенные цвета, то есть используются более-менее бледные цвета, которые наиболее распространены, им удается в достаточной степени завуалировать недостаток в цветовой яркости, чтобы он не бросался в глаза в освещенном помещении. К примеру, у 100% насыщенного красного яркость будет 40% от нормы, а у 50% насыщенного - уже 75% от нормы. Тем не менее, при отображении насыщенных цветов нехватка цветовой яркости будет очевидна.

Собственно, «Цветовая Яркость». Позавидовав способности конкурентов так вольно обращаться с цветами и цифрами в той области, которую производители трехматричных LCD проекторов считают своим «коньком», последние придумали себе новый стандарт – “цветовая яркость”. Точнее, “световой поток по цветам”, поскольку в паспорте у проектора не яркость, а люмены. Стандарт говорит о том, что, раз вы измерили яркость проектора по белому, то теперь проверьте ее по красному, зеленому и синему – если их сумма не равна яркости белого, то пусть вам будет грустно. В вышеупомянутом примере я получаю 3000 люмен яркости и 800 люмен цветовой яркости. Другими словами, взятые по отдельности, красный, зеленый и синий оказываются слабы. И не лучше дело обстоит с остальными насыщенными цветами. Как было сказано выше, эти цифры могут не в полной мере отражать то, что мы реально увидим на среднестатистическом изображении, но при отображении красного, зеленого, синего и пр. это будет адекватно. Естественно, трехматричные проекторы, построенные по RGB принципу, красуются заявлением, что “максимальная яркость = цветовая яркость”.

Заключение

Вот они – два ключевых дефекта ярких режимов проектора, о которых стоит помнить, если вам нужно работать в сложных условиях освещения. Именно они делают разницу между адекватным компромиссом и несмотрибельным изображением, вынуждающим вас принципиально отказаться от использования наиболее яркого режима, перейдя на менее яркий.

Параметр «Цветовая яркость» позволяет быстро уловить, в какой степени производитель прибегал к усилению белого у одноматричного проектора, хотя мы не знаем всех тонкостей изображения, которое мы получим в ярком режиме. Тут надо смотреть и на то, в какой степени яркость цветов слаба либо сильна не только на 100%, но и на меньшей насыщенности каждого цвета - ведь такие цвета встречаются чаще.

Параметр «зеленый оттенок» нельзя измерить цветовой температурой, посколько на шкале CIE линия зеленого перпендикулярна линии цветовой температуры (синий-желтый-красный). Получается, что надо смотреть в обзорах диаграмму баланса белого.

Приходится смотреть в обзоры и на диаграммы.

Итак, коротко для справки: изначально свет, как электромагнитное излучение с определённой длиной волны - белый. Но при пропускании его через призму он раскладывается на следующие составляющие его видимые цвета (видимый спектр): к расный, о ранжевый, ж ёлтый, з елёный, г олубой, с иний, ф иолетовый (к аждый о хотник ж елает з нать г де с идит ф азан).

Почему я выделил "видимые "? Особенности строения человеческого глаза позволяют нам различать только эти цвета, оставляя вне поля нашего зрения ультрафиолетовое и инфракрасное излучение. Способность человеческого глаза воспринимать цвет напрямую зависит от способности материи окружающего нас мира поглощать одни световые волны и отражать другие. Почему красное яблоко красное? Потому что поверхность яблока, имея определённый био-химический состав, поглощает все волны видимого спектра, за исключением красного, который от поверхности отражается и, попадая в наш глаз в виде электромагнитного излучения определённой частоты, воспринимается рецепторами и распознаётся мозгом как красный цвет. С зелёным яблоком или оранжевым апельсином ситуация аналогичная, как и со всей материей, которая нас окружает.

Рецепторы человеческого глаза наиболее чувствительны к синему, зелёному и красному цвету видимого спектра. На сегодня существует около 150000 цветовых тонов и оттенков. При этом человек может различать порядка 100 оттенков по цветовому тону, около 500 оттенков серого. Естественно, художники, дизайнеры и т.д. обладают более широким диапазоном цветовосприятия. Все цвета, расположенные в видимом спектре, называются хроматическими.

видимый спектр хроматических цветов

Наряду с этим очевидным является и тот факт, что помимо "цветных" цветов мы также распознаём и "не цветные", "чёрно-белые" цвета. Так вот, оттенки серого цвета в диапазоне "белый - чёрный" называются ахроматическими (бесцветными) из-за отсутствия в них конкретного цветового тона (оттенка видимого спектра). Наиболее ярким ахроматическим цветом является белый, наиболее тёмным - чёрный.

ахроматические цвета

Далее, для правильного понимания терминологии и грамотного использования теоретических знаний на практике необходимо найти различия в понятиях "тон" и "оттенок". Так вот, цветовой тон - характеристика цвета, определяющая его положение в спектре. Синий цвет - это тон, красный цвет - это тоже тон. А оттенок - это разновидность одного цвета, отличающаяся от него как яркостью, светлотой и насыщенностью, так и наличием добавочного цвета, проявляющегося на фоне основного. Светло-голубой и тёмно-голубой - оттенки голубого по насыщенности, а голубовато-зелёный (бирюзовый) - по наличию в голубом добавочного зелёного цвета.

Что такое яркость цвета ? Это характеристика цвета, напрямую зависящая от степени освещённости объекта и характеризующая плотность светового потока, направленного в сторону наблюдателя. Говоря проще, если при всех остальных равных условиях, один и тот же объект последовательно осветить источниками света разной мощности, пропорционально поступающему свету отражённый от объекта свет будет также разной мощности. В итоге одно и то же красное яблоко при ярком свете будет выглядеть ярко красным, а при отсутствии света мы его не увидим вообще. Особенность яркости цвета заключается в том, что при её снижении любой цвет стремится к чёрному.

И ещё: при одинаковых условиях освещённости один и тот же цвет может отличаться яркостью благодаря способности отражать (или поглощать) поступающий свет. Глянцевый чёрный будет ярче, чем матовый чёрный именно потому, что глянец больше отражает поступающий свет, а матовый - больше поглощает.

Светлота, светлота… Как характеристика цвета - существует. Как точное определение - скорее нет. Следуя одним источникам, светлота - степень близости цвета к белому. Согласно другим источникам - субъективная яркость участка изображения, отнесённая к субъективной яркости поверхности, воспринимаемой человеком как белая. Третьи источники относят понятия яркость и светлость цвета к синонимам, что не лишено логики: если при уменьшении яркости цвет стремится к чёрному (становится темнее), то при увеличении яркости цвет будет стремиться к белому (становится светлее).

На практике так и происходит. Во время фото или видео съёмки недоэкспонированные (недостаточно света) объекты в кадре становятся чёрным пятном, а переэкспонированные (переизбыток света) - белым.

Аналогичная ситуация касается и терминов "насыщенность" и "интенсивность" цвета, когда в некоторых источниках говорится, что "насыщенность цвета - это интенсивность …. и т.д. и т.п". На самом деле это абсолютно разные характеристики. Насыщенность - "глубина" цвета, выраженная в степени отличия хроматического цвета от одинакового с ним по светлоте серого цвета. При уменьшении насыщенности каждый хроматический цвет приближается к серому.

Интенсивность - преобладание какого-либо тона по сравнению с другими (в пейзаже осеннего леса оранжевый тон будет преобладающим).

Такая "подмена" понятий происходит, скорее всего, по одной причине: грань между яркостью и светлостью, насыщенностью и интенсивностью цвета настолько тонкая, насколько субъективно само понятие цвет.

Из определений основных характеристик цвета можно выделить следующую закономерность: на цветопередачу (и соответственно на цветовосприятие) хроматических цветов большое влияние оказывают ахроматические цвета. Они не только помогают формировать оттенки, но и делают цвет светлым или темным, насыщенным или блеклым.

Как эти знания могут помочь фотографу или видеографу? Ну во-первых, никакой фотоаппарат или видеокамера не способны передать цвет так, как его воспринимает человек. И чтобы в дальнейшем при пост-обработке фото или видео материала достичь гармонии в изображении или приблизить изображение к реальности, необходимо умело манипулировать яркостью, светлостью и насыщенностью цвета, чтобы результат удовлетворил или Вас, как художника, или окружающих, как зрителей. Не зря в кинопроизводстве существует профессия колорист (в фотографии эту функцию обычно выполняет сам фотограф). Человек, обладающий знаниями о цвете, путём цветокоррекции доводит снятый и смонтированный материал до такого состояния, когда цветовое решение фильма просто заставляет зрителя изумляться и восхищаться одновременно. Во-вторых, в колористике все эти особенности цвета переплетаются довольно тонко и в различной последовательности, позволяя не только расширить возможности цветопередачи, но и добиться каких-то индивидуальных результатов. Если же этими инструментами пользоваться безграмотно, сложно будет найти поклонников своего творчества.

И на этой позитивной ноте мы наконец-то подошли к колористике.

Колористика, как наука о цвете, в своих законах опирается именно на спектр видимого излучения, который трудами исследователей 17-20 вв. из линейного представления (иллюстрация выше) был трансформирован в форму хроматического круга.

Что нам позволяет понять хроматический круг?

1. Основных (базовых, первичных, чистых) цветов всего 3:

Красный

Жёлтый

Синий

2. Составных цветов второго порядка (вторичных) тоже 3:

Зелёный

Оранжевый

Фиолетовый

Мало того, что в хроматическом круге они расположены напротив основных цветов, но и получаются они путём смешивания основных цветов друг с другом (зелёный = синий + жёлтый, оранжевый = жёлтый + красный, фиолетовый = красный + синий).

3. Составных цветов третьего порядка (третичных) 6:

Жёлто-оранжевый

Красно-оранжевый

Красно-фиолетовый

Сине-фиолетовый

Сине-зелёный

Жёлто-зелёный

Составные цвета третьего порядка получаются путём смешивания основных с составными цветами второго порядка.

Именно месторасположение цвета в двенадцатичастном цветовом круге позволяет понять, какие цвета и как могут сочетаться друг с другом.

ПРОДОЛЖЕНИЕ -

  1. Что такое цвет?
  2. Физика цвета
  3. Основные цвета
  4. Теплые и холодные цвета

Что такое цвет?

Цвет – это волны определенного рода электромагнитной энергии, которые после восприятия глазом и мозгом человека преобразуются в цветовые ощущения (см. физика цвета).

Цвет доступен не всем животным на Земле . Полное цветное зрение есть у птиц и приматов, остальные в лучшем случае различают некоторые оттенки, в основном красный.

Появление цветного зрения связано с образом питания. Считается, что у приматов оно появилось в процессе поиска съедобных листьев и зрелых плодов. В дальнейшей эволюции цвет стал помогать человеку определять опасность, запоминать местность, различать растения, определять по цвету облаков надвигающуюся погоду.

Цвет, как носитель информации, в жизни человека стал играть огромную роль.

Цвет – как символ . Информация о предметах или явлениях, окрашенных в определенный цвет, объединились в образ, который сделал из цвета символ. Этот символ меняет свое значение от ситуации, но всегда понятен (он может быть не осознан, но принят подсознанием).
Пример: красный в «сердечке» - символ люби. Красный цвет светофора – предупреждение об опасности.

С помощью цветовых образов можно донести до читателя больше информации. Это лингвистическое понимание цвета .
Пример: Надел я черный цвет,
В душе надежды нет,
Постыл мне белый свет.

Цвет вызывает эстетическое удовольствие или неудовольствие .
Пример: Эстетика выражается в искусстве, хоть оно состоит не только из цвета, но и формы и сюжета. Вы, не зная почему, скажете, что это красиво, а это искусством назвать нельзя.

Цвет влияет на нашу нервную систему, заставляет учащается или замедляться сердцебиение, влияет на обмен веществ и т. д.
Например: в комнате, выкрашенной в синий цвет кажется прохладней, чем есть на самом деле. Потому что, синий замедляет наше сердцебиение, погружает нас в покой.

С каждым столетием цвет все больше и больше несет для нас информации, и теперь есть такое понятие как «цвет культуры», цвет в политических движении и обществ.

Физика цвета

Как такового цвета в природе не существует. Цвет - продукт умственной переработки информации, которая поступает через глаз в виде световой волны.

Человек может отличить до 100 000 оттенков: волны от 400 до 700 миллимикрон. Вне различимых спектрах лежат инфракрасный (с длинной волны более 700 н/м) и ультрафиолет (с длинной волны меньше 400 н/м).

В 1676 г И. Ньютон провел эксперимент по расщеплению светового луча с помощью призмы. В результате он получил 7 явно различимых цветов спектра.

Эти цвета часто сокращают до 3 основных (см. основные цвета)

Волны имеют не только длину, но и частоту колебаний. Эти величины взаимосвязаны, поэтому задать определенную волну можно либо длиной, либо частотой колебаний.

Получив непрерывный спектр, Ньютон пропустил его через собирающую линзу и получил белый цвет. Тем самым доказав:

1 Белый цвет состоит из всех цветов.
2 Для цветовых волн действует принцип сложения
3 Отсутствие света ведет к отсутствию цвета.
4 Черный – это полное отсутствие цвета.

В ходе экспериментов было выяснено, что сами предметы цвета не имеют. Освещенные светом, они отражают часть световых волн, а часть поглощают, в зависимости от своих физических свойств. Отраженные световые волны и будут цветом предмета.
(Например, если на синюю кружку посветить светом, пропущенным через красный фильтр, то мы увидим, что кружка черная, потому что синие волны блокируются красным фильтром, а кружка может отражать только синие волны)

Получается, что ценность краски в ее физических свойствах, но если вы решите смешать синий, желтый и красный (потому что остальные цвета можно получить из комбинации основных цветов (см. основные цвета)), то получите не белый цвет (как если бы вы смешали волны), а неопределенно темный цвет, так как в данном случае действует принцип вычитания.

Принцип вычитания говорит: любое смешивание ведет к отражению волны с меньшей длиной.
Если смешать желтый и красный, то получится оранжевый, длина волны которого меньше длины волны красного. При смешивании красного, желтого и синего получается неопределенно темный цвет – отражение, стремящееся к минимальной воспринимаемой волне.

Этим свойством объясняется маркость белого цвета. Белый цвет – отражение всех цветовых волн, нанесение любого вещества ведет к уменьшению отражения, и цвет становится не чисто белым.

Черный же цвет наоборот. Чтобы выделиться на нем, нужно повысить длину волны и количество отражений, а смешивание ведет на понижение волны.

Основные цвета

Основные цвета – это цвета, с помощью которых можно получить все остальные.

Это КРАСНЫЙ ЖЕЛТЫЙ СИНИЙ

Если смешать между собой красные, синие и желтые цветовые волны, то получится белый цвет.

Если же смешать красную, желтую и синюю краски, то получится темно-неопределенный цвет (см. физика цвета).

Эти цвета разные по светлоте, в которой яркость на пике. Если их перевести в черно белый формат, то вы отчетливо увидите контраст.

Сложно представить себе яркий темно - желтый цвет, как яркий светло - красный. За счет яркости в разных диапазонах светлоты создается огромная гамма промежуточных ярких цветов.

КРАСНЫЙ+ЖЕЛТЫЙ=ОРАНЖЕВЫЙ
ЖЕЛТЫЙ+СИНИЙ=ЗЕЛЕНЫЙ
СИНИЙ+КРАСНЫЙ=ФИОЛЕТОВЫЙ

Цветовой тон, яркость, насыщенность, светлота

Тон – это основная характеристика, по которой называют цвета.

Например, красный или желтый. Существует обширная палитра цветов, основой которой являются 3 цвета (синий, желтый и красный), они, в свою очередь, являются сокращением от 7 основных цветов радуги (потому что, смешивая основные цвета можно получить недостающие 4)

Тона получают смешиванием в разных пропорциях основных цветов.

Тона и оттенки – синонимы.

Полутонами называется незначительное, но уловимое глазом изменение в цвете.

Яркость - характеристика восприятия. Она определяется нашей скоростью выделения одного цвета на фоне других.

Яркими считается «чистые» цвета, без примеси белого или черного. У каждого тона максимальная яркость наблюдается при разной светлоте: тон/светлота .

Это утверждение верно в том случае, если рассматривать линейку оттенков одного цвета.

Если же выделять наиболее яркий оттенок среди других тонов, то более яркими будут цвет как можно больше разнящийся по светлоте с остальными.

Насыщенность (интенсивность) – это степень выраженности определенного тона. Понятие действует в переделе одного тона, где степень насыщенности измеряется степенью отличия от серого: насыщенность/светлота

Это понятие так же связано с яркостью, так как самый насыщенный тон в своей линейке будет самым ярким.

По шкале светлоты видно, что чем больше насыщенность, тем светлее тон.

Светлота – это степень отличия цвета от белого и черного. Если разница между определяемым цветом и черным больше, чем между ним и белым, значит цвет светлый. Если наоборот – темный. Если разница между черным и белым равны, то цвет средний по светлоте.

Для более удобного определения светлоты цвета, без отвлечения на тон, можно перевести цвета в черно-белый вариант:



Светлота важное свойство цвета. Определение темного и светлого очень древний механизм, он наблюдается у простейших одноклеточных животных, для различения света и темноты. Именно эволюция этой способности привела к цветному зрению, но до сих пор глаз охотнее зацепляется за контраст светлого и темного, чем за какой-нибудь другой.

Теплые и холодные цвета

Теплые и холодные цвета связанны с атрибутами времен года. Холодными называют оттенки присущие зиме, а теплые - лету.

Это то «неопределенное», что лежит на поверхности при первом столкновении с понятием. Оно верно, но действительный принцип разделения лежит гораздо глубже.

Разделение на холодные и теплые идет по длине волны. Чем короче волна, тем холоднее цвет, чем длиннее волна, тем теплее цвет.

Зеленый является пограничным цветом: оттенки зеленого могут быть холодными и теплыми, но при этом они в своих свойствах сохраняют серединное положение.

Зеленый спектр самый комфортный для глаза. Наибольшее количество оттенков мы различаем именно в этом цвете.

Почему именно такое разделение: на холодные и теплые? Ведь волны не имеют температуры.

Сначала деление было интуитивно, потому что действие коротковолновых спектров успокаивает. Чувство вялости напоминает состояние человека зимой. Длинноволновые спектры, наоборот, способствовали активности, что похоже на состояние летом. (см. психологию цвета)

С основными цветами понятно. Но есть множество сложных оттенков, которые также относят к холодным или теплым.

Влияние светлоты на температуру цвета.

Для начала определим: холодными или теплыми являются черный и белый цвета?

Белый цвет – это присутствие всех цветов одновременно, это значит, что он наиболее сбалансирован и нейтрален по температуре. По своим свойствам к нему стремится зеленый. (мы можем различить огромное количество белых оттенков)

Черный цвет – отсутствие цветов. Чем короче волна, тем холоднее цвет. Черный достиг апогея – его длина волны – 0, но в связи с отсутствием волн, его также можно причислить в разряд нейтральных.

К примеру, возьмем красный цвет, который является определенно теплым, рассмотрим его светлые и темные оттенки.

Самым теплым будет «чистоволновый», насыщенный, яркий красный цвет (который посередине).

Как получается более темный оттенок красного?

Красный смешивается с черным — перенимает часть его свойств. Точнее, в данном случае, нейтральный смешивается с теплым и остужает его. Чем выше степень «разбавления» красного черным, тем температура бордового ближе к черному.

Как получается более светлый оттенок красного (розовый)?

Белый своей нейтральностью разбавляет теплый красный цвет. За счет этого красный теряет «количество» тепла, в зависимости от пропорции смешивания.

Цвета, разбавленные черным или белым, никогда не перейдут из категории теплых в холодные: они лишь приблизятся к нейтральным свойствам.

Цвета нейтральные по температуре

Нейтральными по температуре можно назвать цвета, имеющие холодный и теплый оттенок в одной светлоте. Например: тон /светлота

Цветовые контрасты

При соотношении двух противоположностей, по какому либо качеству, свойства каждого из группы приумножается. Так, например, длинная полоска кажется еще длиннее рядом с короткой.

При помощи 7 контрастов можно подчеркнуть в цвете то или иное качество.

Существует 7 контрастов :

1 построен на разнице между цветами. Он представляет собой комбинирование цветов, приближенных к определенным спектрам.

Этот контраст влияет на подсознание. Если рассматривать цвет, как источник информации об окружающем мире, то такое сочетание будет нести информационное послание. (а в некоторых случаях вызывать эпилепсию).

Самым выразительным примером является сочетание белого и черного.

Прекрасно подойдет для достижения эффекта определенности.

Как уже говорилось в статье о светлоте цвета: разницу между светлым и темным увидеть проще, чем соотнести оттенки. За счет этого контраста можно достичь объемности и реалистичности изображения.

Основан на разнице «тормозящих» и возбуждающих цветов. Для создания теплового контраста цвета, в чистом виде, цвета берутся одинаковые по светлоте .

Этот контраст хорош для создания образов с разной активностью: от «снежной королевы» до «борца за справедливость».

Дополнительными называют цвета, при смешивании которых получается серый цвет. Если смешивать спектры дополнительных цветов, то получается белый цвет.

В круге Иттена, эти цвета стоят напротив друг друга.

Это наиболее сбалансированный контраст, так как вместе дополнительные цвета достигают «золотой середины» (белого), но проблема заключается в том, что они не могут создать ни движения, ни достижения цели. Поэтому эти сочетания редко используется в повседневности, так как создают впечатление накала страстей, а в таком состоянии тяжело находиться долго.

А вот в живописи этот инструмент весьма уместен.

– его не существует вне нашего восприятия. Этот контраст более других подтверждает стремление нашего сознания к золотой середине.

Симультанный контраст – это создание иллюзии дополнительного цвета на соседнем оттенке.

Более всего это проявляется в сочетание черного или серого с ароматичными (отличным от черно-белого) цветами.

Если сосредоточенно смотреть на каждый серый прямоугольник по очереди, дожидаясь, когда глаз устанет, то серый изменит оттенок на дополнительный по отношению к фону.

На оранжевом, серый примет синеватый оттенок,

На красном – зеленоватый,

На фиолетовом – желтоватый оттенок.

Этот контраст скорее вреден, чем полезен. Для его погашения следует в изменяемый цвет добавить оттенок основного. Точнее, если в серый цвет добавить желтизны и определить его на оранжевый фон, то симультанный контраст сведется к нулю.

С понятием насыщенности можно ознакомиться .

Добавлю, что к ненасыщенным цветам могут также относиться затемненные, засветленные, сложные не яркие цвета.

Чистый контраст по насыщенности строится на основе разницы между ярким и не ярким цветами в одной светлоте .

Этот контраст дает ощущение выдвижения вперед ярких оттенков на фоне не ярких. С помощью контраста по насыщенности можно подчеркнуть деталь гардероба, расставить акценты.

Основан на количественной разнице между цветами. В этом контрасте можно достигнуть равновесия или динамики.

Замечено, что для достижения гармонии светлого должно быть меньше, чем темного.

Чем светлее пятно на темном фоне, тем меньше для равновесия оно занимает пространства.

При цветах равных по светлоте пространство, занимаемое пятнами, равно.

Психология цвета, значение цвета

Цветовые сочетания

Гармония цвета

Гармония цветов заключается в их согласованности и строгом сочетании. При подборе гармоничных сочетаний легче пользоваться акварельными красками, а имея определенные навыки подбора тонов на красках, нетрудно будет справиться и с нитками.

Гармония цветов подчиняется определенным законам, и, чтобы лучше их уяснить, надо изучить образование цветов. Для этого используют цветовой круг, который представляет собой замкнутую ленту спектра.

На концах диаметров, разделяющих круг на 4 равные части, располагают 4 главных чистых цвета — красный, желтый, зеленый, синий. Говоря о «чистом цвете», подразумевают, что он не содержит в себе оттенков других, соседних с ним в спектре цветов (например, красный цвет, в котором не замечается ни желтого, ни синего оттенков).

Далее на круге между чистыми цветами располагают промежуточные или переходные цвета, которые получают, смешивая попарно в различных пропорциях соседние чистые цвета (например, смешав зеленый с желтым, получают несколько оттенков зеленого цвета). В каждом спектре можно расположить по 2 или 4 промежуточных цвета.

Смешав каждый цвет в отдельности с белой и черной краской, получают светлые и темные тона одного цвета, например, синий, голубой, темно-синий и т. д. Светлые тона располагают с внутренней стороны цветового круга, а темные — с внешней. Заполнив цветовой круг, можно заметить, что в одной половине круга расположены теплые цвета (красный, желтый, оранжевый), а в другой половине — холодные (синий, голубой, фиолетовый).

Зеленый цвет может быть теплым, если в нем есть примесь желтого, или холодным — с примесью синего. Красный цвет также может быть теплым — с желтоватым оттенком и холодным — с синим оттенком. Гармоничное сочетание цветов заключается в уравновешенности теплых и холодных тонов, а также в согласованности различных цветов и оттенков между собой. Наиболее простым способом определения гармоничных сочетаний цветов является нахождение этих цветов на цветовом круге.

Выделяют 4 группы цветовых сочетаний.

Монохромные — цвета, имеющие одно название, но разную светлоту, то есть переходные тона одного цвета от темного до светлого (полученные путем добавления в один цвет черной или белой краски в разных количествах). Эти цвета наиболее гармонично сочетаются между собой и просты в подборе.

Гармония нескольких тонов одного цвета (лучше 3-4) выглядит интереснее, богаче, чем одноцветная композиция, например белый, светло-голубой, синий и темно-синий или коричневый, светло-коричневый, бежевый, белый.

Монохромные сочетания часто используют в вышивке одежды (например, на голубом фоне вышивают нитками темно-голубыми, голубыми и белыми), декоративных салфеток (например, на суровом полотне вышивают нитками коричневыми, светло-коричневыми, бежевыми), а также в художественной вышивке листьев и лепестков цветов для передачи светотени.

Родственные цвета располагаются в одной четверти цветового круга и имеют в своем составе один общий главный цвет (например, желтый, желто-красный, желтовато-красный). Существуют 4 группы родственных цветов: желто-красные, красно-синие, сине-зеленые и зелено-желтые.

Переходные оттенки одного цвета хорошо согласованы между собой и гармонично сочетаются, так как имеют в своем составе общий главный цвет. Гармоничные сочетания родственных цветов спокойны, мягки, особенно если цвета слабо насыщены и близки по светлоте (красный, пурпурный, фиолетовый).

Родственно-контрастные цвета располагаются в двух соседних четвертях цветового круга на концах хорд (то есть линий, параллельных диаметрам) и имеют в своем составе один общий цвет и два других составляющих цвета, например, желтый с красным оттенком (желток) и синий с красным оттенком (фиолетовый). Эти цвета согласованы (объединены) между собой общим (красным) оттенком и гармонично сочетаются. Существуют 4 группы родственно-контрастных цветов: желто-красные и желто-зеленые; сине-красные и сине-зеленые; красно-желтые и красно-синие; зелено-желтые и зелено-синие.

Родственно-контрастные цвета гармонично сочетаются, если они уравновешены равным количеством присутствующего в них общего цвета (то есть красные и зеленые цвета одинаково желтоваты или синеваты). Эти сочетания цветов выглядят более резко, чем родственные.

Контрастные цвета. Диаметрально противоположные цвета и оттенки на цветовом круге самые контрастные и несогласованные между собой.

Чем больше цвета отличаются друг от друга по цветовому тону, светлоте и насыщенности, тем менее они гармонируют друг с другом. При соприкосновении этих цветов возникает неприятная для глаза пестрота. Но существует способ согласования контрастных цветов. Для этого к основным контрастным цветам добавляют промежуточные, которые гармонично соединяют их.


Практический подход

Занятие 10. ПАРАМЕТРЫ: ЦВЕТОВОЙ ТОН, НАСЫЩЕННОСТЬ,

Порядок выполнения работы

Этот опыт касается любой системы Цветовой тон, Насыщенность, Яркость (TSL)

Сравните систему RGB с системой TSL.

Круг представляет собой насыщенность.

Направление луча представляет собой цветовой тон.

Параметр Яркость находится в третьем измерении.

Перемещайте цветовой прямоугольник для противопоставления с полученными цветами.

А . Где находится цвет, полученный в системе TSL?

B . Где проходит ось яркости?

C . Какова форма колориметрического диапазона?

D . Возможно ли получение такого диапазона с помощью линейной трансформации?

E . В появившемся меню выберите за основу синие цвета. Что вы думаете о полученном круге?

Результаты и выводы

А . Полученный цвет находится на пересечении луча цветового тона и круга насыщен­ности.

B . Ось яркости проходит через центр круга.

C . Полученная фигура – конус. Это одно из возможных изображений системы TSL, существуют и другие.

D . Эту фигуру невозможно было бы получить линейным методом, потому что его не­достаточно для преобразования куба в конус.

Е . Выбрав за основу синие цвета, вы получите цвета в порядке их появления на вектроскопе видеокамеры, но будьте внимательны: это не колориметрическое видеопространство, полученное линейным методом (матрицей).

Теория

Параметры цветовой тон, насыщенность, яркость присутствуют в работах многих специалистов по колориметрии, среди которых следует отметить, прежде всего, А. Манселла и В. Оствальда, которые независимо друг от друга разработали цветовые атласы на основе хроматического круга. Эти пространства называются по-английски hue, saturation, value , или HSB, Hue, Saturation, Brightness , где одним из критериев является яркость, или светлота цвета. Может возникнуть некоторая путаница с по­нятием яркости в фотометрии, поэтому более обоснованным будет использование термина светлоты, который обозначает субъективное восприятие яркости, и даже понятия субъективной яркости (brightness ). В любом случае термин яркость прочно вошел в язык, и существуют четкие различия фотометрического понятия яркости и видеозаписи, где этот термин описывает электрический сигнал. Поэтому термин luma (яркость) предпочтительнее. Также речь может идти о воспринимаемой силе света для прямых источников и об освещенности для освещенных объектов, причем оба термина являются синонимами яркости1. В психофизиологии хромией называют чувственное восприятие цветового тона и насыщенности. Параметры TSL ориенти­рованы на систему яркость-цветность, или luma-chroma для видеоизображений.

Для многих описание цвета с точки зрения параметров цветовой тон, насыщенность, яркость кажется более логичным. Так же как пространство МКО L*, а*, Ь*, эти пространства часто называют «перцептивными». Напомним, что цвет является результатом восприятия, следовательно, все колориметрические пространства - это воспринимаемые пространства. Эти пространства следовало бы даже называть психологическими. В большей части из них используются полярные координаты, хотя представление такого пространства в декартовых координатах также возможно. Отметим, что этот метод сначала не был принят МКО для разработки хроматичес­кого пространства в 1931 году.

Пусть тригонометрический круг имеет радиус величиной в единицу. Пусть точка Р обозначает цвет. В таком пространстве цветовой тон выражен уг­лом Т, образованным изначальным лу­чом и лучом, проходящим через точку р. Насыщенность будет выражена зна­чением S отрезка ОР. Ось, проходящая через центр круга в третьем измерении, обозначает яркость. Для перехода от пространства RGB к TSL используется нелинейное преобразование.

Можно построить различные виды пространств TSL, от самой простой формы конуса до формы двойного конуса или двойной шестиугольной пирамиды. Во многих программах используется именно этот вид изобра­жения цвета.

Изображение в форме конуса обладает одним недостатком: проис­ходит некоторое смешение понятий яркости и насыщенности, потому что единственный способ получения бе­лого - это уменьшение насыщенности цвета.

5.6 Пространство МКО L*, а*, b*

Пространство МКО L*, а*, b* было создано как колориметрическое пространство, соответствующее кодированию сигналов визуального восприятия и однородное с точки зрения дифференциального восприятия цветов. Это пространство также может содержать параметры Цветовой тон, Насыщенность, Яркость. Пространство МКО LAB часто называют «перцептивным» в противопоставлении с другими пространствами. Это не что иное, как сокращение: так как цвет является резуль­татом восприятия, то все колориметрические пространства можно рассматривать как перцептивные. На самом деле это определение следует сформулировать таким образом: психологическое колориметрическое пространство, относительно однородное с точки зрения дифференциального восприятия цветов. В создании этого пространства был использован принцип пространства Hunter Lab 1958 года.

Структура этого пространства основана на работах по организации системы визуального восприятия на трех оппозициях:

· черный - белый (ахроматическая ось);

· красный - зеленый;

· желтый - синий;

Центром этого пространства является ахроматическая ось. Оно вычисляется для каждого стандартного источника света.

На оси + а* – а* красный находится в оппозиции с зеленым.

На оси + b* – b* желтый находится в оппозиции с синим.

Ось L* обозначает светлоту (luma ) во избежа­ние смешения этого термина с понятием яркости в фотометрии.

В таком пространстве эллипсы равного вос­приятия должны иметь равную площадь.

Радиус круга с площадью, равной площади эллипсов, четко определяет единицу для каждого из трех измерений.

Переход от пространства МКО ХУZ к про­странству L*, а*, b* возможен, но преобразования в этом случае будут нелинейными.

Пусть - трихроматические координаты эталонного белого, взятого в качестве идеального рассеивателя.

Рис. 5.23. Три оси пространства МКО LAB

Если > 0,008856, то:

,

при (значение) = значение , если значение > 0,008856,

иначе (значение) = 7,787значение + .

Отметим, что условия, выдвинутые Паули:

предполагают, что эталонные цветовые компоненты достаточно удалены от белой точки. С другой стороны, значение яркости V соответствует ее значению на кри­вой чувствительности глаза к яркости, определение которой было дано выше (см. §3.8).

Если условия Паули учитываются, то уравнения можно записать в упрощенном виде:

С помощью обратной операции можно перейти от системы МКО LAB к системе МКО XYZ .

Если , то

Система LAB позволяет использование цилиндрических координат пространс­тва TSL с координатами L*, С*, Н*. Н* – это цветовой тон (hue ), С* – уровень насыщенности (chroma ), а значение светлоты (luma ) остается постоянным.

Н* = при a ≠ 0

Для всех случаев полное отклонение цвета

а отклонение цветового тона:

Чтобы глаз смог заметить разницу между цветами, необходимо отклонение хотя бы в единицу, = 1, однако на практике часто допускаются и колоримет­рические отклонения = 5.

Рис. 5.24. Цветовой круг в пространстве МКО L*a*b*

Система МКО L*a*b* имеет ряд недостатков:

1. Она не содержит диаграмму цветностей, то есть невозможно вычислить дополнительный цвет или чистоту цвета с помощью простых чертежей или измерений отрезков, так как линии доминантной длины волны становятся в этом пространстве кривыми.

2. При изменении яркости цвета его изображение уже не меняется по прямой. По этой причине это пространство используется в областях, где изменения яркости не являются столь важными, например, в полиграфии.

3. Преобразование насыщенных синих цветов из пространства RGB в L*a*b* немного склоняется к пурпурным, что требует коррекции с помощью программ обработки изображений, таких как Photoshop™.

4. Изохроматические зоны, или эллипсы, не обладают совершенно равной пло­щадью. В частности, изохроматические зоны имеют площадь в два раза больше в области зеленого, чем в области оранжевого. Для всех цветов, расположенных по краям круга, площади этих зон в несколько раз больше, чем площади эллип­сов в центре круга, так как дифференциальное восприятие глаза гораздо шире в области малонасыщенных цветов. Это принцип живописи акварелью, когда изображение накладывается прозрачными цветами на белый фон, и создается бесконечное множество оттенков одним мазком кисти. Что касается съемки на мультиматричную видеокамеру, то колориметрические настройки на сером фоне производить сложнее, чем на цветном фоне. Вы можете повторить первый опыт этого издания, изменив насыщенность цветных карточек (Меню > Настройки изображения > Специальные > Изменить насыщенность). Пространство МКО L*a*b* пока мало используется в видеосъемке, но широко распространено в текстильной промышленности и в полиграфии. Использование этого пространства дополняется возможностями вычислений, возникшими с прогрессом в области информатики. Многие вычисления производятся сначала в системе МКО XYZ , а затем переводятся в систему МКО LAB. Так как уравнения кодирования видеоинформации основаны на пространстве XYZ, то использование этого пространства, а также производных Yxy и Yu’v’ часто остается более простым.

Рис.5.25. Оценка изохроматических зон в пространстве МКО L*а*b*

5.7 Пространство МКО L*, u*, v*

В 1976 году МКО создала пространство L*, u*, v*, отличное от пространств МКО LAB, L, u, v и L, u", v" . Однако оно напрямую связано с пространствами МКО XYZ и L, u", v .

Допустим, что уравнения идентичны уравнениям в системе L, u", v"

Мы получаем:

Это трихроматические координаты белой точки.

Это пространство зависит от данного стандартного источника света (от белой точки). Плюсом этого пространства является возможность сохранения линейных функций (основанных на прямых линиях) на диаграмме цветностей. Тогда как система МКО LAB предназначена для цветов, нанесенных на основу и на различ­ные красители, пространство МКО LUV было разработано главным образом для цветовых систем, в которых изменения яркости являются важным параметром: например, для видеоэкранов.

Насыщенность цвета - параметр цвета, характеризующий степень чистоты цветового тона. Чем ближе цвет к монохроматическому, тем более он насыщен.

В теории цвета насыщенность - это интенсивность определённого тона, то есть степень визуального отличия хроматического цвета от равного по светлоте ахроматического (серого) цвета. Насыщенный цвет можно назвать сочным, глубоким, менее насыщенный - приглушённым, приближённым к серому. Полностью ненасыщенный цвет будет оттенком серого. Насыщенность (saturation) - одна из трёх координат в цветовых пространствах HSL и HSV. Насыщенность (цветовая насыщенность, chroma) в цветовых пространствах CIE 1976 Lab и Luv является неформализованной величиной, используемой в представлении CIE LCH (lightness (светлота), хрома (chroma, насыщенность), hue (тон)).

В физическом плане насыщенность цвета определяется характером распределения излучения в спектре видимого света. Наиболее насыщенный цвет образуется при существовании пика излучения на одной длине волны, в то время как более равномерное по спектру излучение будет восприниматься как менее насыщенный цвет. В субтрактивной модели формирования цвета, например при смешении красок на бумаге, снижение насыщенности будет наблюдаться при добавлении белых, серых, чёрных красок, а также при добавлении краски дополнительного цвета. ()

Чистота - это степень приближения дан-ного цвета к чистому спектральному, выражаемая в долях единицы.

Наибольшей чистотой обладают цвета спектра. Поэтому чистота всех спектральных цветов прини-мается за единицу, несмотря на их различную насыщенность. Наиболее насыщен синий цвет, наименее - желтый. Особенно насыщенные цвета наблюдаются в спектре, который не содержит примесей белого или черного.

Хроматическую композицию можно построить, варьируя насыщенность одного цвета постоянной светлоты. Это достигается добавлением к выбран-ному цвету нужного количества равного ему по светлоте серого. В результате варианты выбран-ного цвета образуют чистый ряд по насыщенности, в которой насыщенность закономерно изменяется, светлота остается неизменной, а цветовой тон ахроматизируется. ()

Когда к чистому цвету добавляется черный, то меняется его светлота:

Ещё пример, как изменяется насыщенность синего при добавлении к нему серого:

Изменение насыщенности и светлоты оттенков оранжевого и синего:

Как видно на картинке, при добавлении средне-серого и черного к оттенкам теплых цветов при уменьшении насыщенности получаются коричневатые оттенки цвета, холодные цвета становятся сероватыми. На этой картинке изменение чистого цвета идет по двум параметрам: насыщенности и светлоты. Светлота уменьшается с добавлением черного, насыщенность - серого.

Наименее насыщенные и наиболее светлые цвета - пастельные:

Различают несколько качественных характеристик насыщенности цвета:
- живая (vivid) насыщенность;
- сильная (strong) насыщенность;
- глубокая (deep) насыщенность.
Ненасыщенные цвета характеризуются, как тусклые (dull), слабые (weak) или вымытые.

Пример изменения цвета в зависимости от его светлоты (value) и насыщенности (chroma), на примере красного цвета из книги цвeта Манселла:

А так выглядит зеленый цвет с одинаковой светлотой, но с разной насыщенностью (даны процентные соотношения первичных цветов в системе CMYK).