Вероятностные характеристики случайных сигналов. Модели и характеристики случайных сигналов

Случайные сигналы

Тест № 2

Вопросы для самопроверки

1. Объясните причину возникновения искажений в передаче сообщений, наблюдаемых при перемодуляции.

2. Чем определяется распределение мощности в спектре АМ сигнала?

3. Почему непосредственная демодуляция ОБП сигнала приводит к искажению передаваемого сообщения?

4. Укажите сходства и различия между сигналами с частотной и фазовой модуляцией.

5. Как связаны между собой частота модуляции, ее индекс и девиация частоты?

6. Объясните различие между спектрами АМ и ЧМ сигналов.

7. Укажите особенности модуляции цифровых сигналов.

1. Модуляцией называется процесс:

a. Суммирования низкочастотного информационного сигнала и высокочастотного несущего колебания;

b. Изменения одного из параметров высокочастотного колебания под воздействием низкочастотного сигнала, отображающего передаваемое сообщение;

c. Перемножения низкочастотного информационного сигнала и высокочастотного несущего колебания;

d. Выделения модуля комплексного сигнала.

2. Амплитудной модуляцией называется процесс изменения амплитуды:

b. Сигнала при изменении его частоты;

c. Сигнала при его прохождении через линейный четырехполюсник;

d. Высокочастотного несущего колебания по закону передаваемого сообщения.

3. Частотной модуляцией называется процесс изменения частоты:

a. Сигнала при изменении его фазы;

4. Фазовой модуляцией называется процесс изменения фазы:

a. Сигнала при изменении его частоты;

b. Сигнала при изменении его амплитуды;

c. Высокочастотного несущего колебания по закону передаваемого сообщения;

d. Сигнала при его прохождении через нелинейный четырехполюсник.

5. Спектр амплитудно-модулированного сигнала состоит из:

a. Частоты несущего колебания и двух боковых полос;

b. Частоты несущего колебания и одной боковой полосы;

c. Частоты несущего колебания и кратных частот;

d. Только из боковых полос.

Случайный процесс (СП) – совокупность (ансамбль) функций времени, подчиняющийся некоторой общей для них статистической закономерности. Бывают непрерывные, дискретные, квантованные и цифровые СП.

Если взять конкретные значения t 1 , то, усреднив их, можно получить математическое ожидание.

F(x) – интегральный закон распределения. Он показывает вероятность того, что произвольно взятое Х будет меньше х .



Плотность распределения величины показывает, какова наибольшая вероятность попадания в заданный интервал.

На практике наиболее значимыми являются следующие параметры СП.

Математическое ожидание – величина, к которой в среднем стремится СП:

Дисперсия характеризует мощность процесса, разброс случайных значений относительно математического ожидания

Среднеквадратическое отклонение характеризует линейный разброс, а не квадратичный, как дисперсия:

Для дискретных сигналов каждое значение возможно с вероятностью р к, но .

Свойства

1. Если х 1 >х 2 , то F(x 1)>F(x 2 ).

2. F (-¥)=0, F (+¥)=1.

3. Если х ® -¥ (х ® +¥), то f(x )®0.

4. –– площадь плотности вероятности всегда равна 1.

Случайный сигнал описывается случайной функцией времени Х(t). Эту функцию можно рассматривать как бесконечную совокупность функций x i (t), каждая из которых представляет собой одну из возможных реализаций X(t). Графически это можно представить следующим образом (рисунок 1):

Рисунок 1

Полное описание случайных сигналов может быть произведено с помощью системы вероятностных характеристик. Любая из этих характеристик может быть определена либо усреднением по совокупности реализации x i (t), либо усреднением по времени одной бесконечно длинной реализации.

Зависимость или независимость результатов таких усреднений определяет следующие фундаментальные свойства случайных сигналов - стационарность и эргодичность.

Стационарным называется сигнал, вероятностные характеристики которого не зависят от времени.

Эргодическим называется сигнал, вероятностные характеристики которого не зависят от номера реализации.

Для стационарных эргодических сигналов усреднение любой вероятностной характеристики по множеству реализаций эквивалентно усреднению по времени одной теоретически бесконечно длинной реализации.

Для практических целей наиболее важными являются следующие вероятностные характеристики стационарных эргодических сигналов, имеющих длительность реализации Т:

Среднее значение (математическое ожидание). Оно характеризует постоянную составляющую сигнала

Средняя мощность. Она характеризует средний уровень сигнала

Дисперсия, характеризующая среднюю мощность переменной составляющей сигнала:

Среднеквадратическое отклонение (СКО)

Функция распределения, которая определяется как интегральная вероятность того, что значение xi(tj) в j-й момент времени будут ниже некоторых значений X:

Для заданных стационарных эргодичных сигналов F x характеризуется относительным временем пребывания реализации ниже уровня Х (ф i -, i -й интервал пребывания, n - количество интервалов, рисунок 2)

Рисунок 2

Одномерная плотность вероятности, называемая дифференциальным законом распределения:

где - расстояние между соседними уровнями X(t), называемое дифференциальным коридором;

I -й интервал пребывания реализации в пределах (см. рисунок 2).

Корреляционная функция. Она характеризует стохастическую (случайную) связь между двумя мгновенными значениями случайного сигнала, разделенного заданным интервалом времени ф

Взаимная корреляционная функция. Она характеризует стохастическую связь мгновенными значениями случайных сигналов x(t) и y(t), разделенными интервалом времени ф

Из выражений (1)-(8) видно, что все вероятностные характеристики представляют собой неслучайные числа или функции и определяется по одной реализации бесконечной длительности. Практически же длительность Т, называемая продолжительностью анализа, всегда ограничена, поэтому на практике мы можем определить не сами характеристики, а только их оценки. Эти оценки, полученные экспериментальным путем, называются статическими характеристиками. А раз оценка, значит приближение, которое характеризуется погрешностями, называемыми статистическими погрешностями.

вероятностный эргодический случайный дискретный

1. Особенности исследования САУ при случайных воздействиях

При детерминированных заранее заданных воздействиях состояние САУ в любой момент t определяется начальным состоянием системы в некоторый момент времени t0 и приложенными к системе воздействиями. Эта задача определяется решением соответствующего дифференциального уравнения

anx (n)+an-1x(n-1)+…+a0x=bmg(m)+bm-1g(m-1)+…+b0g. (26.1)

Если ai, bj - постоянные коэффициенты, а g - определенная функция времени, то решение этого уравнения для заданных начальных условий будет единственным и определенным для всего интервала времени.

Однако в реальных условиях часто внешние воздействия изменяются случайно, т.е. заранее не предвиденным образом. Например:

суточные изменения нагрузки энергосистемы;

порывы ветра, действующие на самолет;

удары волны в гидродинамических системах;

сигналы радиолокационных установок;

шумы в радиотехнических устройствах и т.д.

Случайные воздействия могут прикладываться к системе извне (внешние воздействия) или возникать внутри некоторых ее элементов (внутренние шумы).

Очевидно, если в уравнении (26.1) g - входное воздействие заранее не определено, т.е. является случайной функцией, или параметры системы ai, bj изменяются случайным образом, то получить решение этого уравнения в детерминированном (т.е. определенном) виде невозможно.

Конечно, можно задаться некоторыми максимальными значениями этих параметров и решить поставленную задачу (расчет системы на заданную точность при максимальных значениях случайных воздействий). Но поскольку максимальные значения случайной величины наблюдаются редко, то в этом случае к системе будут предъявлены заведомо более жесткие требования, чем это вызывается реальностью.

Правда, такой подход иногда является единственно возможным(высокоточное производство, иначе – брак). Поэтому в большинстве случаев расчет системы при случайных воздействиях ведут не по максимальному, а по наиболее вероятному значению случайных величин, т.е. по такому значению, которое встречается наиболее часто.

В этом случае получают наиболее рациональное техническое решение (меньший коэффициент усиления системы, меньшие габариты отдельных устройств, меньшее потребление энергии), хотя для маловероятных значений задающего воздействия будет иметь место ухудшение работы системы.

Расчет САУ при случайных воздействиях с помощью специальных статистических методов, которые оперируют статистическими характеристиками случайных воздействий, являющихся не случайными, а детерминированными величинами.

САУ, спроектированная на основе статистических методов, будет обеспечивать соответствующие требования не для одного, детерминированного воздействия, а для целой совокупности этих воздействий, заданных с помощью статистических характеристик (если ошибка САУ носит случайный характер, то точное ее значение в какой-либо момент времени при статистическом расчете получить невозможно).

Статистические методы расчета САУ основаны на расчетах и работах советских ученых: Хинчина А.Я., Колмогорова А.Н., Гнеденко В.В., Солодовникова В.В., Пугачева В.С., Казакова И.Е. и др., а также зарубежных ученых – Н. Винера, Л. Заде, Дж. Рагоцине, Калмана, Бьюси и др.

2. Краткие сведения о случайных процессах.

Случайной функцией называется функция, которая при каждом значении независимой переменной является случайной величиной. Слу­чайные функции, для которых независимой переменной является время t,называют случайными процессами. Так как в САУ процессы протекают во времени, то в дальнейшем будем рассматривать только случайные процессы.

Случайный процесс x(t) не есть определенная кривая, он явля­ется множеством определенных кривых x i (t) (i=1,2,…,n), по­лучаемых в результате отдельных опытов (рис.26.1). Каждую кривую этого множества называют реализацией случайного процесса, и сказать, по какой из реализаций пойдет процесс, невозможно.

Рис. 26.1. Графики реализаций и математического ожидания случайного процесса

Для случайного процесса, как и для случайной величины, для определения статистических свойств вводят понятие функции распре­деления (интегральный закон распределения) F(x, t) и плотнос­ти вероятности (дифференциальный закон распределения) w(x, t). Данные характеристики зависят от фиксированного момента времени наблюдения t и от некоторого выбранного уровня x, то есть явля­ются функциями двух переменных - x, и t.

Функции F(x, t) и w(x, t) являются простейшими статис­тическими характеристиками случайного процесса. Они характеризуют случайный процесс изолированно в отдельных сечениях, не раскрывая связи между сечениями случайного процесса.

К основным характеристикам случайных процессов, наиболее ши­роко используемых при исследовании систем управления, относят: математическое ожидание, дисперсию, среднее значение квадрата слу­чайного процесса, корреляционную функцию, спектральную плотность и другие.

А. Математическое ожидание m x (t) является средним значением случайного процесса x(t) по множеству и определяется

(26.2)

где w 1 (x, t) - одномерная плотность вероятности случайного про­цесса x(t).

Математическое ожидание случайного процесса x(t) представляет собой некоторую неслучайную функцию времени m x (t), около которой группируются и относительно которой колеблются все реализации дан­ного случайного процесса (рис. 26.1).

Средним значением квадрата случайного процесса называют вели­чину

(26.3)

Часто вводят в рассмотрение центрированный случайный процесс , под которым понимают отклонение случайного процесса X(t) от его среднего значения m x (t), или

(26.4)

Б. Дисперсия. Чтобы учесть степень разбросанности реализаций случайного про­цесса относительно его среднего значения, вводят понятие дисперсии случайного процесса, которая равна математическому ожиданию квад­рата центрированного случайного процесса

(26.5)

Дисперсия случайного процесса является неслучайной функцией времени D x (t) и характеризует разброс случайного процесса Х(t) от­носительно его математического ожидания m x (t).

На практике широко применяются статистические характеристики, имеющие ту же размерность, что и случайная величина, к которым от­носятся:

Среднее квадратическое значение случайного процесса

равное значению квадратного корня из среднего значения квадрата случайного процесса;

Среднее квадратичное отклонение случайного процесса

(26.7)

равное значению квадратного корня из дисперсии случайного процесса.

Математическое ожидание и дисперсия являются важными характе­ристиками случайного процесса, но не дают достаточного представления о внутренних связях случайного процесса, которые оказывают су­щественное влияние на характер его реализаций в пределах заданного интервала времени.

Одной из статистических характеристик, отражающих особенности внутренних связей случайного процесса, является корреляционная функция.

В. Корреляционной функцией случайного процесса Х(t) называют неслучайную функцию двух аргументов R x (t 1 ,t 2), которая для каж­дой пары произвольно выбранных значений моментов времени t 1 и t 2 равна математическому ожиданию произведения двух случайных величин -Х(t 1) и Х(t 2), соответствующих сечений случайного процесса:

где w 1 (x 1 , t 1 , x 2 , t 2) двумерная плотность вероятности.

Случайные процессы в зависимости от того, как изменяются их статистические характеристики с течением времени, делят на стационарные и нестационарные. Различают стационарность в узком и широком смысле .

Стационарным в узком смысле называют случайный процесс Х(t), если его n-мерные функции распределения и плотность вероятнос­ти при любом n не зависят от положения отсчета времени t.

Стационарным в широком смысле называют случайный процесс X(t), математическое ожидание которого постоянно:

М[Х(t)]= m x =const, (26.9)

а корреляционная функция зависит только от одной переменной - раз­ности аргументов t=t 2 -t 1:

В теории случайных процессов пользуются двумя понятиями сред­них значений: среднее значение по множеству и среднее значение по времени.

Среднее значение по множеству определяется на основе наблюде­ния над множеством реализаций случайного процесса в один и тот же момент времени, т.е.

(26.11)

Среднее значение по времени определяется на основе наблюде­ний за отдельной реализацией случайного x(t) на протяжении доста­точно длительного времени Т, т.е.

(26.12)

Из эргодической теоремы вытекает, что для так называемых эргодических стационарных случайных процессов среднее значение по множеству совпадает со средним значением по времени, т.е.

(26.13)

В соответствии с эргодической теоремой для стационарного слу­чайного процесса с математическим ожиданием m 0 x =0 корреляционную функцию можно определить

где x(t) - любая реализация случайного процесса.

Статистические свойства связи двух случайных процессов Х(t) и G(t) можно характеризовать взаимной корреляционной функцией R xg (t 1 ,t 2), которая для каждой пары произвольно выбранных значении аргументов t 1 и t 2 равна

Согласно эргодической теореме вместо (26.15) можно записать

(26.16)

где x(t) и g(t)- любые реализации стационарных случайных процес­сов Х(t) и G(t).

Если случайные процессы Х(t) и G(t) статистически не связаны друг с другом и имеют равные нулю средние значения, то их взаимная корреляционная функция для всех t равна нулю.

Приведем некоторые свойства корреляционных функций.

1. Начальное значение корреляционной функции равно среднему

значению квадрата случайного процесса:

2. Значение корреляционной функции при любом t не может превышать ее начального значения, то есть

3. Корреляционная функция есть четная функция от t, т.е.

(26.18)

Другой статистической характеристикой, отражающей внутреннюю структуру стационарного случайного процесса Х(t), является спект­ральная плотность S x (w), которая характеризует распределение энергии случайного сигнала по спектру частот.

Г. Спектральная плотность S x (w) случайного процесса Х(t) опре­деляется как преобразование Фурье корреляционной функции R(t),

(26.19)

Следовательно,

так как спектральная плотность S x (a ) является действительной и четной функцией частоты w.

Соотношения (26.19) и (26.20) позволяют установить некоторые зависимости между структурой случайного процесса Х(t) и видом ха­рактеристик R x (t) и S x (w) (рис.26.2).

Ид приведенных графиков следует, что с увеличением скорости изменения реализации Х(t) корреляционная функция R x (t) сужает­ся (обостряется), а спектральная плотность S x (w) расширяется.

Информация, передаваемая по каналу связи или извлекаемая в результате измерения, заключена в сигнале.

До приема сообщения (до испытания) сигнал следует рассматривать как случайный процесс, представляющий собой совокупность (ансамбль) функций времени, подчиняющихся некоторой общей для них статистической закономерности. Одна из этих функций, ставшая полностью известной после приема сообщения, называется реализацией случайного процесса. Эта реализация является уже не случайной, а детерминированной функцией времени.

Важной, но не исчерпывающей характеристикой случайного процесса является присущий ему одномерный закон распределения вероятностей.

На рис. 4.1 изображена совокупность функций , образующих случайный процесс . Значения, которые могут принимать отдельные функции в момент времени , образуют совокупность случайных величин

Рис. 4.1. Совокупность функций, образующих случайный процесс

Вероятность того, что величина при измерении попадает в какой-либо заданный интервал (рис. 4.1), определяется выражением

Функция представляет собой дифференциальный закон распределения случайной величины называется одномерной плотностью вероятности, а - интегральной вероятностью.

Функция имеет смысл для случайных непрерывного типа, могущих принимать любое значение в некотором интервале. При любом характере функции должно выполняться равенство

где - границы возможных значений

Если же является случайной величиной дискретного типа и может принимать любое из конечного числа дискретных значений, то (4.2) следует заменить суммой

где - вероятность, соответствующая величине .

Задание одномерной плотности вероятности позволяет произвести статистическое усреднение как самой величины так и любой функции . Под статистическим усреднением подразумевается усреднение по множеству (по ансамблю) в каком-либо «сечении» процесса, т. е. в фиксированный момент времени.

Для практических приложений наибольшее значение имеют следующие параметры случайного процесса:

математическое ожидание

дисперсия

среднее квадратическое отклонение

Одномерная плотность вероятности недостаточна для полного описания процесса, так как она дает вероятностнре представление о случайном процессе X(t) только в отдельные фиксированные моменты времени.

Более полной характеристикой является двумерная плотность вероятности позволяющая учитывать связь значений принимаемых случайной функцией в произвольно выбранные моменты времени

Исчерпывающей вероятностной характеристикой случайного процесса является -мерная плотность вероятности при достаточно больших n. Однако большое число задач, связанных с описанием случайных сигналов, удается решать на основе двумерной плотности вероятности.

Задание двумерной плотности вероятности позволяет, в частности, определить важную характеристику случайного процесса - ковариационную функцию

Согласно этому определению ковариационная функция случайного процесса представляет собой статистически усредненное произведение значений случайной функции в моменты

Для каждой реализации случайного процесса произведение является некоторым числом. Совокупность реализаций образует множество случайных чисел, распределение которых характеризуется двумерной плотностью вероятности При заданной функции операция усреднения по множеству осуществляется по формуле

При двумерная случайная величина вырождается в одномерную величину Можно поэтому написать

Таким образом, при нулевом интервале между моментами времени ковариационная функция определяет величину среднего квадрата случайного процесса в момент

При анализе случайных процессов часто основной интерес представляет его флуктуационная составляющая. В таких случаях применяется корреляционная функция

Подставляя в вместо вместо можно получить следующее выражение:

При выражение (4.8) в соответствии с (4.4) определяет дисперсию случайного процесса Следовательно,

Исследование случайного процесса, а также воздействия его на радиоцепи существенно упрощается при стационарности процесса.

Случайный процесс называется строго стационарным, если его плотность вероятности произвольного порядка зависит только от интервалов и не зависит от положения этих интервалов в области изменения аргумента

В радиотехнических приложениях теории случайных процессов условие стационарности обычно ограничивается требованием независимости от времени только одномерной и двумерной плотностей вероятности (случайный процесс, стационарный в широком смысле). Выполнение этого условия позволяет считать, что математическое ожидание, средний квадрат и дисперсия случайного процесса не зависят от времени, а корреляционная функция зависит не от самих моментов времени , а только от интервала между ними

Стационарность процесса в широком смысле можно трактовать как стационарность в рамках корреляционной теории (для моментов не выше второго порядка).

Таким образом, для случайного процесса, стационарного в широком смысле, предыдущие выражения можно записывать без обозначения фиксированных моментов времени. В частности,

Дальнейшее упрощение анализа случайных процессов достигается при использовании условия эргодичности процесса. Стационарный случайный процесс называется эргодическим, если при определении любых статистических характеристик усреднение по множеству реализаций эквивалентно усреднению по времени одной теоретически бесконечно длинной реализации.

Условие эргодичности случайного процесса включает в себя и условие его стационарности. В соответствии с определением эргодического процесса соотношения эквивалентны следующим выражениям, в которых операция усреднения по времени обозначена чертой:

Если представляет собой электрический сигнал (ток, напряжение), то - постоянная составляющая случайного сигнала, - средняя мощность флуктуации сигнала [относительно постоянной составляющей х(t)].

Выражение (4.15) внешне совпадает с определением (2.131) корреляционной функции детерминированного сигнала (периодического).

Часто применяется нормированная корреляционная функция

Функции характеризуют связь (корреляцию) между значениями разделенными промежутком . Чем медленнее, плавнее изменяется во времени тем больше промежуток , в пределах которого наблюдается статистическая связь между мгновенными значениями случайной функции.

При экспериментальном исследовании случайных процессов используются временнйе корреляционные характеристики процесса (4.15)-(4.19), поскольку, как правило, экспериментатору доступно наблюдение одной реализации сигнала, а не множества его реализаций. Интегрирование выполняется, естественно, не в бесконечных пределах, а на конечном интервале Т, длина которого должна быть тем больше, чем выше требование к точности результатов измерения.


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ ИРАДИОЭЛЕКТРОНИКИ

Кафедра метрологии и стандартизации

РЕФЕРАТ

На тему:

« Измерение характеристик случайных сигналов »

МИНСК, 2008

Статистические измерения – это методы и средства измерения параметров и характеристик случайных сигналов. Они базируются на общих принципах измерений параметров сигналов, но имеют свою специфику и особенности, вытекающие из теории случайных процессов.

Вероятностные характеристики случайных сигналов

Случайным называется сигнал, мгновенные значения которого изменяются во времени случайным образом. Он описывается случайной функцией времени Х(t). Эту функцию можно рассматривать как бесконечную совокупность функций x i (t), каждая из которых представляет собой одну из возможных реализаций X(t). Графически это можно представить следующим образом (рисунок 1):


Полное описание случайных сигналов может быть произведено с помощью системы вероятностных характеристик. Любая из этих характеристик может быть определена либо усреднением по совокупности реализации x i (t), либо усреднением по времени одной бесконечно длинной реализации.

Зависимость или независимость результатов таких усреднений определяет следующие фундаментальные свойства случайных сигналов – стационарность и эргодичность.

Стационарным называется сигнал, вероятностные характеристики которого не зависят от времени.

Эргодическим называется сигнал, вероятностные характеристики которого не зависят от номера реализации.

Для стационарных эргодических сигналов усреднение любой вероятностной характеристики по множеству реализаций эквивалентно усреднению по времени одной теоретически бесконечно длинной реализации.

Для практических целей наиболее важными являются следующие вероятностные характеристики стационарных эргодических сигналов, имеющих длительность реализации Т:

Среднее значение (математическое ожидание). Оно характеризует постоянную составляющую сигнала

; (1)

Средняя мощность. Она характеризует средний уровень сигнала

; (2)

Дисперсия, характеризующая среднюю мощность переменной составляющей сигнала:

; (3)

Среднеквадратическое отклонение (СКО)

; (4)

Функция распределения, которая определяется как интегральная вероятность того, что значение xi(tj) в j-й момент времени будут ниже некоторых значений X:

. (5)

Для заданных стационарных эргодичных сигналов F x характеризуется относительным временем пребывания реализации ниже уровня Х (τ i –, i –й интервал пребывания, n – количество интервалов, рисунок 2)


Одномерная плотность вероятности, называемая дифференциальным законом распределения:

, (6) - расстояние между соседними уровнями X(t), называемое дифференциальным коридором; - iй интервал пребывания реализации в пределах (см. рисунок 1.11).

Корреляционная функция. Она характеризует стохастическую (случайную) связь между двумя мгновенными значениями случайного сигнала, разделенного заданным интервалом времени τ

; (7)

Взаимная корреляционная функция. Она характеризует стохастическую связь мгновенными значениями случайных сигналов x(t) и y(t), разделенными интервалом времени τ

. (8)

Из выражений (1)-(8) видно, что все вероятностные характеристики представляют собой неслучайные числа или функции и определяется по одной реализации бесконечной длительности. Практически же длительность Т, называемая продолжительностью анализа, всегда ограничена, поэтому на практике мы можем определить не сами характеристики, а только их оценки. Эти оценки, полученные экспериментальным путем, называются статическими характеристиками. А раз оценка, значит приближение, которое характеризуется погрешностями, называемыми статистическими погрешностями.

Измерение среднего значения средней мощности и дисперсии

Согласно формуле (1) измерение m x сводится к интегрированию случайного сигнала за время Т. Интегрирование можно выполнить с помощью анало-

говых или цифровыхинтегрирующих устройств, применяемых в вольтметрах.

При практическом выборе времени интегрирования Т надо минимизировать статистические погрешности. Это условие соблюдается при Т

(τ м.к. – максимальный интервал корреляции, за пределами которого выборки сигнала можно считать практически некоррелированными).

Измерение P x характерно тем, что согласно формуле (2) усредняется квадрат сигнала, поэтому измеритель P x содержит в своем составе устройство с квадратичной характеристикой. Задача измерения P x решается с помощью вольтметра среднеквадратичного значения, имеющего открытый вход. Показаниятакоговольтметра равно

.Квольтметрам,измеряющимP x ,предъявляются повышенные требования в отношении широкополосности,протяженности квадратичногоучасткахарактеристикидетектированияивремениусреднения Т.

Для измерения D x тоже может быть использован вольтметр среднеквадратичного значения, только в соответствии с формулой (3) он должен иметь закрытый вход. Показания такого вольтметра согласно (4) будут соответствовать значениям σ х.

Анализ распределения вероятностей

Метод измерения по относительному времени пребывания

При измерении этим методом удобнее измерять не значение τ i , фигурирующее в формуле (7), а значение τ i ’ , характеризующее время пребывания функции х(t) выше уровня х, поэтому при экспериментальном анализе определяется функция

, (9)

Для определения

в соответствии с формулой (7) необходимо образовать дифференциальный коридор ∆х, как показано на рисунке 3, и измерить кроме значений τ i ’еще и τ i ’’, характеризующее время пребывания реализации х(t) выше уровня х+∆х, причем

∆t¢ i =∆t 1i +∆t 2i = τ¢ i – τ² i . (10)

Анализаторы, реализующие данный метод, могут быть как аналоговыми, так и цифровыми. Структурная схема аналогового анализатора предоставлена на рисунке 3.

С помощью ВУ обеспечивается уровень сигнала, необходимый для нормальной работы других функциональных узлов измерителя. Компараторы К1 и К2 выполняют функции амплитудных селекторов и имеют уровни срабатывания х и х+∆х соответственно. Эти уровни задаются регулятором уровня (РУ) и могут изменяться при одновременном обеспечении постоянства ширины дифференциального коридора ∆х. Таким образом сигналы на выходе К1 и К2 имеют вид импульсов U1 и U2 (рисунок 3), длительности которых соответственно равны τ i ’ и τ i ’’ . Формирующие устройства ФУ1 и ФУ2 стандартизируют эти импульсы по форме и амплитуде. Напряжения U1 и U2 позволяют измерить

и .

При измерении

осуществляется усреднение или интегрирование напряжения U1 (переключатель П в положении «1»), а при измерении с помощью схемы вычитания образуется разностное напряжение U3, которое тоже усредняется. Вид индикаторного устройства (ИУ) определяется назначением анализатора. Например, в панорамных анализаторах управление уровнями срабатывания компараторов К1 и К2 осуществляется синхронно и автоматически с разверткой осциллографа, применяемого в качестве ИУ. Такое ИУ позволяет регистрировать графики функций и .

Измерение корреляционных функций

Метод дискретных выборок